FAO. FAOSTAT Statistics Database. http://www.fao.org/faostat/ (2018). Accessed 20 Aug 2018.
Moscone, E. A. et al. The evolution of chili peppers (Capsicum—Solanaceae): a cytogenetic perspective. Acta Hortic. 745, 137–169 (2007).
DeWitt, D. & Bosland, P. W. Peppers of the World: An Identification Guide (Ten Speed Press, Berkeley, California, US, 1996).
[+]
FAO. FAOSTAT Statistics Database. http://www.fao.org/faostat/ (2018). Accessed 20 Aug 2018.
Moscone, E. A. et al. The evolution of chili peppers (Capsicum—Solanaceae): a cytogenetic perspective. Acta Hortic. 745, 137–169 (2007).
DeWitt, D. & Bosland, P. W. Peppers of the World: An Identification Guide (Ten Speed Press, Berkeley, California, US, 1996).
Nuez, F., Ortega, R. G. & García, J. C. El Cultivo de Pimientos, Chiles y Ajies (Mundi-Prensa, Madrid, Spain, 2003).
Kraft, K. H. The Domestication of the Chile Pepper, Capsicum annuum: Genetic, Ecological, and Anthropogenic Patterns of Genetic Diversity. ProQuest Dissertations and Theses (2009).
Onus, A. N. & Pickersgill, B. Unilateral incompatibility in Capsicum (Solanaceae): occurrence and taxonomic distribution. Ann. Bot. 94, 289–295 (2004).
Tong, N. & Bosland, P. W. Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 109, 71–77 (1999).
Ince, A. G., Karaca, M. & Onus, A. N. Genetic relationships within and between Capsicum species. Biochem. Genet. 48, 83–95 (2010).
Zijlstra, S., Purimahua, C. & Lindhout, P. Pollen tube growth in interspecific crosses between Capsicum species. Euphytica 26, 585–586 (1991).
Yoon, J., Cheol Yang, D., Wahng Do, J. & Guen Park, H. Overcoming two post-fertilization genetic barriers in interspecific hybridization between Capsicum annuum and C. baccatum for introgression of anthracnose resistance. Breed. Sci. 56, 31–38 (2006).
Manzur, J. P., Fita, A., Prohens, J. & Rodríguez-Burruezo, A. Successful wide hybridization and introgression breeding in a diverse set of common peppers (Capsicum annuum) using different cultivated ají (Capsicum baccatum) accessions as donor parents. PLoS ONE 10, e0144142 (2015).
González-Pérez, S. et al. New insights into Capsicum spp. relatedness and the diversification process of Capsicum annuum in Spain. PLoS ONE 9, e116276 (2014).
Crosby, K. M. in Vegetables II (eds. Prohens, J., Nuez, F. & Carena, M. J.) 221–248 (Springer US, 2008).
Rodríguez-Burruezo, A., Pereira-Dias, L. & Fita, A. in Variedades Locales de Pimiento en España y Su Mejora Genética (eds. Galarreta de, J. I. R., Prohens, J. & Tierno, R.) 405–426 (Gráficas Irudi, Vitoria-Gasteiz, Spain, 2016).
Hammer, K., Arrowsmith, N. & Gladis, T. Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90, 241–250 (2003).
Brugarolas, M., Martinez-Carrasco, L., Martinez-Poveda, A. & Ruiz, J. J. A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Span. J. Agric. Res. 7, 294–304 (2009).
Ashrafi, H. et al. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genom. 13, 571 (2012).
Qin, C. et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl Acad. Sci. USA 111, 5135–5140 (2014).
Park, M. et al. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. Plant J. 69, 1018–1029 (2012).
Kim, S. et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 46, 270–278 (2014).
Prohens, J. et al. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213, 158 (2017).
Ibiza, V. P., Blanca, J., Cañizares, J. & Nuez, F. Taxonomy and genetic diversity of domesticated Capsicum species in the Andean region. Genet. Resour. Crop Evol. 59, 1077–1088 (2012).
He, J. et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5, 484 (2014).
Glaubitz, J. C. et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9, e90346 (2014).
Poland, J. & Rife, T. Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome 5, 92–102 (2012).
Gardner, K. M. et al. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 4, 1681–1687 (2014).
Chung, Y. S., Choi, S. C., Jun, T. H. & Kim, C. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425–431 (2017).
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
Taranto, F., D’Agostino, N., Greco, B., Cardi, T. & Tripodi, P. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom. 17, 943 (2016).
Taitano, N. et al. Genomewide genotyping of a novel Mexican Chile Pepper collection illuminates the history of landrace differentiation after Capsicum annuum L. domestication. Evol. Appl. https://doi.org/10.1111/eva.12651 (2018).
Nimmakayala, P. et al. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front. Plant Sci. 7, 1646 (2016).
Nimmakayala, P. et al. Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci. Rep. 6, 38081 (2016).
Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus 12, 13–15 (1990).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
R Development Core Team. R: A Language and Environment for Statistical Computing (2009).
Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).
Wickham, H ggplot2: Elegant Graphics for Data Analysis (Springer, US, 2016).
Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
Saitou, N. & Nei, M. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Weir, B. & Clark Cockerham, C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).
Ahn, Y. K. et al. Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci. Rep. 8, 5188 (2018).
Sonah, H. et al. An improved Genotyping by Sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8, e54603 (2013).
Hulse-Kemp, A. M. et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic. Res. 5, 4 (2018).
Wakeley, J. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Tree 11, 158–163 (1996).
Eshbaugh, W. H. Genetic and biochemical systematic studies of chili peppers (Capsicum - Solanaceae). Bull. Torre. Bot. Club 102, 396 (1975).
Raw, A. Foraging behavior of wild bees at hot pepper flowers (Capsicum annuum) and its possible influence on cross pollination. Ann. Bot. 85, 487–492 (2000).
Cheng, J. et al. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.). Sci. Rep. 6, 33293 (2016).
Lee, H. Y. et al. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 17, 142 (2016).
Nicolaï, M., Cantet, M., Lefebvre, V., Sage-Palloix, A. M. & Palloix, A. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol. 60, 2375–2390 (2013).
Andrews, J. Peppers: The Domesticated Capsicums (University of Texas Press, Austin, Texas, US, 1995).
Hayano-Kanashiro, C., Gámez-Meza, N. & Medina-Juárez, L. Á. Wild pepper Capsicum annuum L. var. glabriusculum: taxonomy, plant morphology, distribution, genetic diversity, genome sequencing, and phytochemical compounds. Crop Sci. 56, 1–11 (2016).
McLeod, M. J., Guttman, S. I. & Eshbaugh, W. H. Early evolution of chili peppers (Capsicum). Econ. Bot. 36, 361–368 (1982).
Pickersgill, B. Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann. Bot. 100, 925–940 (2007).
Walsh, B. M. & Hoot, S. B. Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB‐rbcL spacer region and nuclear waxy introns. Int. J. Plant Sci. 162, 1409–1418 (2001).
McLeod, M. J., Eshbaugh, W. H. & Guttman, S. I. An electrophoretic study of Capsicum (Solanaceae): the purple flowered taxa. Bull. Torre. Bot. Club 106, 326 (1979).
Kraft, K. H. et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl Acad. Sci. USA 111, 6165–6170 (2014).
Bosland, P. W. & Votava, E. J. Peppers: Vegetable and Spice Capsicums (CABI, New York, US, 2012).
Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S. & Nuez, F. HS-SPME comparative analysis of genotypic diversity in the volatile fraction and aroma-contributing compounds of Capsicum fruits from the annuum–chinense–frutescens complex. J. Agric. Food Chem. 58, 4388–4400 (2010).
Wang, L., Li, J., Zhao, J. & He, C. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Front. Plant Sci. 6, 248 (2015).
Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: defining, estimating and interpreting Fst. Nat. Rev. Genet. 10, 639–650 (2009).
Barchi, L., Lefebvre, V., Sage-Palloix, A. M., Lanteri, S. & Palloix, A. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor. Appl. Genet. 118, 1157–1171 (2009).
Han, K. et al. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 23, 81–91 (2016).
Hill, T. A. et al. Regions underlying population structure and the genomics of organ size determination in Capsicum annuum. Plant Genome 10, https://doi.org/10.3835/plantgenome2017.03.0026 (2017).
Yarnes, S. C. et al. Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56, 61–74 (2013).
Rao, G. U., Ben Chaim, A., Borovsky, Y. & Paran, I. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor. Appl. Genet. 106, 1457–1466 (2003).
Chaim, A., Borovsky, Y., De Jong, W. & Paran, I. Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor. Appl. Genet. 106, 889–894 (2003).
Moses, M. & Umaharan, P. Genetic structure and phylogenetic relationships of Capsicum chinense. J. Am. Soc. Hortic. Sci. 137, 250–262 (2012).
Albrecht, E., Zhang, D., Saftner, R. A. & Stommel, J. R. Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet. Resour. Crop Evol. 59, 517–538 (2012).
[-]