- -

Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms

Show full item record

Herrera, J.; Moltó, G. (2020). Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms. IEEE Access. 8:52139-52150. https://doi.org/10.1109/ACCESS.2020.2980852

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156949

Files in this item

Item Metadata

Title: Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms
Author: Herrera, Jose Moltó, Germán
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] The wide adoption of microservices architectures has introduced an unprecedented granularisation of computing that requires the coordinated execution of multiple containers with diverse lifetimes and with potentially ...[+]
Subjects: Auto-scaling , Bio-inspired , Sofware containers.
Copyrigths: Reconocimiento (by)
Source:
IEEE Access. (eissn: 2169-3536 )
DOI: 10.1109/ACCESS.2020.2980852
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/ACCESS.2020.2980852
Project ID:
AEI/TIN2016-79951-R
Description: (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Thanks:
This work was supported by the Ministerio de Economía, Industria y Competitividad, Spanish Government, for the Project BigCLOE under Grant TIN2016-79951-R
Type: Artículo

This item appears in the following Collection(s)

Show full item record