- -

Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms

Mostrar el registro completo del ítem

Herrera, J.; Moltó, G. (2020). Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms. IEEE Access. 8:52139-52150. https://doi.org/10.1109/ACCESS.2020.2980852

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156949

Ficheros en el ítem

Metadatos del ítem

Título: Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms
Autor: Herrera, Jose Moltó, Germán
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] The wide adoption of microservices architectures has introduced an unprecedented granularisation of computing that requires the coordinated execution of multiple containers with diverse lifetimes and with potentially ...[+]
Palabras clave: Auto-scaling , Bio-inspired , Sofware containers.
Derechos de uso: Reconocimiento (by)
Fuente:
IEEE Access. (eissn: 2169-3536 )
DOI: 10.1109/ACCESS.2020.2980852
Editorial:
Institute of Electrical and Electronics Engineers
Versión del editor: https://doi.org/10.1109/ACCESS.2020.2980852
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/
Descripción: (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
Agradecimientos:
This work was supported by the Ministerio de Economía, Industria y Competitividad, Spanish Government, for the Project BigCLOE under Grant TIN2016-79951-R
Tipo: Artículo

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem