Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera, Jose | es_ES |
dc.contributor.author | Moltó, Germán | es_ES |
dc.date.accessioned | 2020-12-12T04:32:31Z | |
dc.date.available | 2020-12-12T04:32:31Z | |
dc.date.issued | 2020-03-16 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/156949 | |
dc.description | (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. | es_ES |
dc.description.abstract | [EN] The wide adoption of microservices architectures has introduced an unprecedented granularisation of computing that requires the coordinated execution of multiple containers with diverse lifetimes and with potentially different auto-scaling requirements. These applications are managed by means of container orchestration platforms and existing centralised approaches for auto-scaling face challenges when used for the timely adaptation of the elasticity required for the different application components. This paper studies the impact of integrating bio-inspired approaches for dynamic distributed auto-scaling on container orchestration platforms. With a focus on running self-managed containers, we compare alternative configuration options for the container life cycle. The performance of the proposed models is validated through simulations subjected to both synthetic and real-world workloads. Also, multiple scaling options are assessed with the purpose of identifying exceptional cases and improvement areas. Furthermore, a nontraditional metric for scaling measurement is introduced to substitute classic analytical approaches. We found out connections for two related worlds (biological systems and software container elasticity procedures) and we open a new research area in software containers that features potential self-guided container elasticity activities. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Economía, Industria y Competitividad, Spanish Government, for the Project BigCLOE under Grant TIN2016-79951-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Access | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Auto-scaling | es_ES |
dc.subject | Bio-inspired | es_ES |
dc.subject | Sofware containers. | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/ACCESS.2020.2980852 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Herrera, J.; Moltó, G. (2020). Toward Bio-Inspired Auto-Scaling Algorithms: An Elasticity Approach for Container Orchestration Platforms. IEEE Access. 8:52139-52150. https://doi.org/10.1109/ACCESS.2020.2980852 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1109/ACCESS.2020.2980852 | es_ES |
dc.description.upvformatpinicio | 52139 | es_ES |
dc.description.upvformatpfin | 52150 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 2169-3536 | es_ES |
dc.relation.pasarela | S\407705 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |