- -

Weighted General Group Lasso for Gene Selection in Cancer Classification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Weighted General Group Lasso for Gene Selection in Cancer Classification

Show full item record

Wang, Y.; Li, X.; Ruiz García, R. (2019). Weighted General Group Lasso for Gene Selection in Cancer Classification. IEEE Transactions on Cybernetics. 49(8):2860-2873. https://doi.org/10.1109/TCYB.2018.2829811

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157285

Files in this item

Item Metadata

Title: Weighted General Group Lasso for Gene Selection in Cancer Classification
Author: Wang, Yadi Li, Xiaoping Ruiz García, Rubén
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] Relevant gene selection is crucial for analyzing cancer gene expression datasets including two types of tumors in cancer classification. Intrinsic interactions among selected genes cannot be fully identified by most ...[+]
Subjects: Cancer classification , Gene selection , Group lasso , Heuristic , Joint mutual information
Copyrigths: Reserva de todos los derechos
Source:
IEEE Transactions on Cybernetics. (issn: 2168-2267 )
DOI: 10.1109/TCYB.2018.2829811
Publisher:
Institute of Electrical and Electronics Engineers
Publisher version: https://doi.org/10.1109/TCYB.2018.2829811
Project ID:
NSFC/61572127
Jiangsu Province Key Research and Development, China/BE2015728
National Key Research and Development Program, China/2017YFB1400801
MINISTERIO DE ECONOMIA Y EMPRESA/DPI2015-65895-R
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094940-B-I00/ES/OPTIMIZACION DE OPERACIONES EN TERMINALES PORTUARIAS/
Thanks:
This work was supported in part by the National Natural Science Foundation of China under Grant 61572127, in part by the National Key Research and Development Program of China under Grant 2017YFB1400801, in part by the Key ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record