Mostrar el registro sencillo del ítem
dc.contributor.author | Parra Gómez, Jorge | es_ES |
dc.contributor.author | Olivares-Sánchez-Mellado, Irene | es_ES |
dc.contributor.author | Brimont, Antoine Christian Jacques | es_ES |
dc.contributor.author | Sanchis Kilders, Pablo | es_ES |
dc.date.accessioned | 2020-12-17T04:33:25Z | |
dc.date.available | 2020-12-17T04:33:25Z | |
dc.date.issued | 2019-08-15 | es_ES |
dc.identifier.issn | 0146-9592 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157295 | |
dc.description.abstract | [EN] The lack of memory effect of silicon makes it unfeasible to store electronic data in photonics. Here we propose a nonvolatile readout photonic memory, which is electronically written/erased and optically read. The memory utilizes indium tin oxide as a floating gate and exploits its epsilon-near-zero regime and electro-optic activity. Extinction ratios greater than 10 dB in a bandwidth of 100 nm for a 5 mu m long memory are obtained. Furthermore, power consumption in the order of microwatts with retention times of about a decade have been predicted. The proposed structure opens a pathway for developing highly integrated electro-optic devices such as memory banks. (C) 2019 Optical Society of America. | es_ES |
dc.description.sponsorship | The authors thank Alba Vicente for her valuable comments. Ministerio de Economia y Competitividad (MINECO) (TEC2016-76849, TEC2017-92037-EXP); Ministerio de Educacion, Cultura y Deporte (MECD) (FPU17/04224); Universitat Politecnica de Valencia (UPV) (FPI-Irene Olivares). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Optical Society | es_ES |
dc.relation.ispartof | Optics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanocavity modulator | es_ES |
dc.subject | Ultra-Compact | es_ES |
dc.subject | Wave-Guide | es_ES |
dc.subject | Silicon | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Non-volatile epsilon-near-zero readout memory | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OL.44.003932 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//TEC2017-92037-EXP/ES/HACIA UN NUEVO PARADIGMA QUE PERMITA BIESTABILIDAD ELECTROOPTICA EN LA PLATAFORMA DE FOTONICA DE SILICIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU17%2F04224/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Parra Gómez, J.; Olivares-Sánchez-Mellado, I.; Brimont, ACJ.; Sanchis Kilders, P. (2019). Non-volatile epsilon-near-zero readout memory. Optics Letters. 44(16):3932-3935. https://doi.org/10.1364/OL.44.003932 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/OL.44.003932 | es_ES |
dc.description.upvformatpinicio | 3932 | es_ES |
dc.description.upvformatpfin | 3935 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.pmid | 31415515 | es_ES |
dc.relation.pasarela | S\392151 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 | es_ES |
dc.description.references | Barrios, C. A., & Lipson, M. (2006). Silicon photonic read-only memory. Journal of Lightwave Technology, 24(7), 2898-2905. doi:10.1109/jlt.2006.875964 | es_ES |
dc.description.references | Song, J.-F., Lim, A. E.-J., Luo, X.-S., Fang, Q., Li, C., Jia, L. X., … Lo, G.-Q. (2016). Silicon photonic integrated circuits with electrically programmable non-volatile memory functions. Optics Express, 24(19), 21744. doi:10.1364/oe.24.021744 | es_ES |
dc.description.references | Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8 | es_ES |
dc.description.references | Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics, 6(2), 553-557. doi:10.1021/acsphotonics.8b01628 | es_ES |
dc.description.references | Yu, Z., Zheng, J., Xu, P., Zhang, W., & Wu, Y. (2018). Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon. IEEE Photonics Technology Letters, 30(3), 250-253. doi:10.1109/lpt.2017.2783928 | es_ES |
dc.description.references | Shi, K., Haque, R. R., Zhao, B., Zhao, R., & Lu, Z. (2014). Broadband electro-optical modulator based on transparent conducting oxide. Optics Letters, 39(17), 4978. doi:10.1364/ol.39.004978 | es_ES |
dc.description.references | Wood, M. G., Campione, S., Parameswaran, S., Luk, T. S., Wendt, J. R., Serkland, D. K., & Keeler, G. A. (2018). Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5(3), 233. doi:10.1364/optica.5.000233 | es_ES |
dc.description.references | Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J. S., Kik, P. G., & Brongersma, M. L. (2018). Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics, 5(11), 4484-4490. doi:10.1021/acsphotonics.8b00945 | es_ES |
dc.description.references | Li, E., Gao, Q., Chen, R. T., & Wang, A. X. (2018). Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Nano Letters, 18(2), 1075-1081. doi:10.1021/acs.nanolett.7b04588 | es_ES |
dc.description.references | Li, E., Gao, Q., Liverman, S., & Wang, A. X. (2018). One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Optics Letters, 43(18), 4429. doi:10.1364/ol.43.004429 | es_ES |
dc.description.references | Li, E., Nia, B. A., Zhou, B., & Wang, A. X. (2019). Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photonics Research, 7(4), 473. doi:10.1364/prj.7.000473 | es_ES |
dc.description.references | Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., … Leuthold, J. (2014). The plasmonic memristor: a latching optical switch. Optica, 1(4), 198. doi:10.1364/optica.1.000198 | es_ES |
dc.description.references | Electron emission in intense electric fields. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181. doi:10.1098/rspa.1928.0091 | es_ES |
dc.description.references | Lin, H. C., Ye, P. D., & Wilk, G. D. (2005). Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Applied Physics Letters, 87(18), 182904. doi:10.1063/1.2120904 | es_ES |
dc.description.references | Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 89(10), 5243-5275. doi:10.1063/1.1361065 | es_ES |
dc.description.references | Vasudev, A. P., Kang, J.-H., Park, J., Liu, X., & Brongersma, M. L. (2013). Electro-optical modulation of a silicon waveguide with an «epsilon-near-zero» material. Optics Express, 21(22), 26387. doi:10.1364/oe.21.026387 | es_ES |
dc.description.references | Koch, U., Hoessbacher, C., Niegemann, J., Hafner, C., & Leuthold, J. (2016). Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides. IEEE Photonics Journal, 8(1), 1-13. doi:10.1109/jphot.2016.2518861 | es_ES |
dc.description.references | Gao, Q., Li, E., & Wang, A. X. (2018). Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Optical Materials Express, 8(9), 2850. doi:10.1364/ome.8.002850 | es_ES |
dc.description.references | Niemelä, J.-P., Marin, G., & Karppinen, M. (2017). Titanium dioxide thin films by atomic layer deposition: a review. Semiconductor Science and Technology, 32(9), 093005. doi:10.1088/1361-6641/aa78ce | es_ES |
dc.description.references | Michelotti, F., Dominici, L., Descrovi, E., Danz, N., & Menchini, F. (2009). Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 μm. Optics Letters, 34(6), 839. doi:10.1364/ol.34.000839 | es_ES |