- -

Non-volatile epsilon-near-zero readout memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-volatile epsilon-near-zero readout memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra Gómez, Jorge es_ES
dc.contributor.author Olivares-Sánchez-Mellado, Irene es_ES
dc.contributor.author Brimont, Antoine Christian Jacques es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2020-12-17T04:33:25Z
dc.date.available 2020-12-17T04:33:25Z
dc.date.issued 2019-08-15 es_ES
dc.identifier.issn 0146-9592 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157295
dc.description.abstract [EN] The lack of memory effect of silicon makes it unfeasible to store electronic data in photonics. Here we propose a nonvolatile readout photonic memory, which is electronically written/erased and optically read. The memory utilizes indium tin oxide as a floating gate and exploits its epsilon-near-zero regime and electro-optic activity. Extinction ratios greater than 10 dB in a bandwidth of 100 nm for a 5 mu m long memory are obtained. Furthermore, power consumption in the order of microwatts with retention times of about a decade have been predicted. The proposed structure opens a pathway for developing highly integrated electro-optic devices such as memory banks. (C) 2019 Optical Society of America. es_ES
dc.description.sponsorship The authors thank Alba Vicente for her valuable comments. Ministerio de Economia y Competitividad (MINECO) (TEC2016-76849, TEC2017-92037-EXP); Ministerio de Educacion, Cultura y Deporte (MECD) (FPU17/04224); Universitat Politecnica de Valencia (UPV) (FPI-Irene Olivares). es_ES
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanocavity modulator es_ES
dc.subject Ultra-Compact es_ES
dc.subject Wave-Guide es_ES
dc.subject Silicon es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Non-volatile epsilon-near-zero readout memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.44.003932 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TEC2017-92037-EXP/ES/HACIA UN NUEVO PARADIGMA QUE PERMITA BIESTABILIDAD ELECTROOPTICA EN LA PLATAFORMA DE FOTONICA DE SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU17%2F04224/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Parra Gómez, J.; Olivares-Sánchez-Mellado, I.; Brimont, ACJ.; Sanchis Kilders, P. (2019). Non-volatile epsilon-near-zero readout memory. Optics Letters. 44(16):3932-3935. https://doi.org/10.1364/OL.44.003932 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OL.44.003932 es_ES
dc.description.upvformatpinicio 3932 es_ES
dc.description.upvformatpfin 3935 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 16 es_ES
dc.identifier.pmid 31415515 es_ES
dc.relation.pasarela S\392151 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151 es_ES
dc.description.references Barrios, C. A., & Lipson, M. (2006). Silicon photonic read-only memory. Journal of Lightwave Technology, 24(7), 2898-2905. doi:10.1109/jlt.2006.875964 es_ES
dc.description.references Song, J.-F., Lim, A. E.-J., Luo, X.-S., Fang, Q., Li, C., Jia, L. X., … Lo, G.-Q. (2016). Silicon photonic integrated circuits with electrically programmable non-volatile memory functions. Optics Express, 24(19), 21744. doi:10.1364/oe.24.021744 es_ES
dc.description.references Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8 es_ES
dc.description.references Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics, 6(2), 553-557. doi:10.1021/acsphotonics.8b01628 es_ES
dc.description.references Yu, Z., Zheng, J., Xu, P., Zhang, W., & Wu, Y. (2018). Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon. IEEE Photonics Technology Letters, 30(3), 250-253. doi:10.1109/lpt.2017.2783928 es_ES
dc.description.references Shi, K., Haque, R. R., Zhao, B., Zhao, R., & Lu, Z. (2014). Broadband electro-optical modulator based on transparent conducting oxide. Optics Letters, 39(17), 4978. doi:10.1364/ol.39.004978 es_ES
dc.description.references Wood, M. G., Campione, S., Parameswaran, S., Luk, T. S., Wendt, J. R., Serkland, D. K., & Keeler, G. A. (2018). Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5(3), 233. doi:10.1364/optica.5.000233 es_ES
dc.description.references Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J. S., Kik, P. G., & Brongersma, M. L. (2018). Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics, 5(11), 4484-4490. doi:10.1021/acsphotonics.8b00945 es_ES
dc.description.references Li, E., Gao, Q., Chen, R. T., & Wang, A. X. (2018). Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Nano Letters, 18(2), 1075-1081. doi:10.1021/acs.nanolett.7b04588 es_ES
dc.description.references Li, E., Gao, Q., Liverman, S., & Wang, A. X. (2018). One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Optics Letters, 43(18), 4429. doi:10.1364/ol.43.004429 es_ES
dc.description.references Li, E., Nia, B. A., Zhou, B., & Wang, A. X. (2019). Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photonics Research, 7(4), 473. doi:10.1364/prj.7.000473 es_ES
dc.description.references Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., … Leuthold, J. (2014). The plasmonic memristor: a latching optical switch. Optica, 1(4), 198. doi:10.1364/optica.1.000198 es_ES
dc.description.references Electron emission in intense electric fields. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181. doi:10.1098/rspa.1928.0091 es_ES
dc.description.references Lin, H. C., Ye, P. D., & Wilk, G. D. (2005). Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Applied Physics Letters, 87(18), 182904. doi:10.1063/1.2120904 es_ES
dc.description.references Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 89(10), 5243-5275. doi:10.1063/1.1361065 es_ES
dc.description.references Vasudev, A. P., Kang, J.-H., Park, J., Liu, X., & Brongersma, M. L. (2013). Electro-optical modulation of a silicon waveguide with an «epsilon-near-zero» material. Optics Express, 21(22), 26387. doi:10.1364/oe.21.026387 es_ES
dc.description.references Koch, U., Hoessbacher, C., Niegemann, J., Hafner, C., & Leuthold, J. (2016). Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides. IEEE Photonics Journal, 8(1), 1-13. doi:10.1109/jphot.2016.2518861 es_ES
dc.description.references Gao, Q., Li, E., & Wang, A. X. (2018). Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Optical Materials Express, 8(9), 2850. doi:10.1364/ome.8.002850 es_ES
dc.description.references Niemelä, J.-P., Marin, G., & Karppinen, M. (2017). Titanium dioxide thin films by atomic layer deposition: a review. Semiconductor Science and Technology, 32(9), 093005. doi:10.1088/1361-6641/aa78ce es_ES
dc.description.references Michelotti, F., Dominici, L., Descrovi, E., Danz, N., & Menchini, F. (2009). Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 μm. Optics Letters, 34(6), 839. doi:10.1364/ol.34.000839 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem