- -

Non-volatile epsilon-near-zero readout memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-volatile epsilon-near-zero readout memory

Mostrar el registro completo del ítem

Parra Gómez, J.; Olivares-Sánchez-Mellado, I.; Brimont, ACJ.; Sanchis Kilders, P. (2019). Non-volatile epsilon-near-zero readout memory. Optics Letters. 44(16):3932-3935. https://doi.org/10.1364/OL.44.003932

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157295

Ficheros en el ítem

Metadatos del ítem

Título: Non-volatile epsilon-near-zero readout memory
Autor: Parra Gómez, Jorge Olivares-Sánchez-Mellado, Irene Brimont, Antoine Christian Jacques Sanchis Kilders, Pablo
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Fecha difusión:
Resumen:
[EN] The lack of memory effect of silicon makes it unfeasible to store electronic data in photonics. Here we propose a nonvolatile readout photonic memory, which is electronically written/erased and optically read. The ...[+]
Palabras clave: Nanocavity modulator , Ultra-Compact , Wave-Guide , Silicon
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Letters. (issn: 0146-9592 )
DOI: 10.1364/OL.44.003932
Editorial:
The Optical Society
Versión del editor: https://doi.org/10.1364/OL.44.003932
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/AEI//TEC2017-92037-EXP/ES/HACIA UN NUEVO PARADIGMA QUE PERMITA BIESTABILIDAD ELECTROOPTICA EN LA PLATAFORMA DE FOTONICA DE SILICIO/
info:eu-repo/grantAgreement/MECD//FPU17%2F04224/
Agradecimientos:
The authors thank Alba Vicente for her valuable comments. Ministerio de Economia y Competitividad (MINECO) (TEC2016-76849, TEC2017-92037-EXP); Ministerio de Educacion, Cultura y Deporte (MECD) (FPU17/04224); Universitat ...[+]
Tipo: Artículo

References

Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Barrios, C. A., & Lipson, M. (2006). Silicon photonic read-only memory. Journal of Lightwave Technology, 24(7), 2898-2905. doi:10.1109/jlt.2006.875964

Song, J.-F., Lim, A. E.-J., Luo, X.-S., Fang, Q., Li, C., Jia, L. X., … Lo, G.-Q. (2016). Silicon photonic integrated circuits with electrically programmable non-volatile memory functions. Optics Express, 24(19), 21744. doi:10.1364/oe.24.021744 [+]
Soref, R. (2006). The Past, Present, and Future of Silicon Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1678-1687. doi:10.1109/jstqe.2006.883151

Barrios, C. A., & Lipson, M. (2006). Silicon photonic read-only memory. Journal of Lightwave Technology, 24(7), 2898-2905. doi:10.1109/jlt.2006.875964

Song, J.-F., Lim, A. E.-J., Luo, X.-S., Fang, Q., Li, C., Jia, L. X., … Lo, G.-Q. (2016). Silicon photonic integrated circuits with electrically programmable non-volatile memory functions. Optics Express, 24(19), 21744. doi:10.1364/oe.24.021744

Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Cecchini, M., … Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1). doi:10.1038/s41598-016-0001-8

Xu, P., Zheng, J., Doylend, J. K., & Majumdar, A. (2019). Low-Loss and Broadband Nonvolatile Phase-Change Directional Coupler Switches. ACS Photonics, 6(2), 553-557. doi:10.1021/acsphotonics.8b01628

Yu, Z., Zheng, J., Xu, P., Zhang, W., & Wu, Y. (2018). Ultracompact Electro-Optical Modulator-Based Ge2Sb2Te5 on Silicon. IEEE Photonics Technology Letters, 30(3), 250-253. doi:10.1109/lpt.2017.2783928

Shi, K., Haque, R. R., Zhao, B., Zhao, R., & Lu, Z. (2014). Broadband electro-optical modulator based on transparent conducting oxide. Optics Letters, 39(17), 4978. doi:10.1364/ol.39.004978

Wood, M. G., Campione, S., Parameswaran, S., Luk, T. S., Wendt, J. R., Serkland, D. K., & Keeler, G. A. (2018). Gigahertz speed operation of epsilon-near-zero silicon photonic modulators. Optica, 5(3), 233. doi:10.1364/optica.5.000233

Liu, X., Zang, K., Kang, J.-H., Park, J., Harris, J. S., Kik, P. G., & Brongersma, M. L. (2018). Epsilon-Near-Zero Si Slot-Waveguide Modulator. ACS Photonics, 5(11), 4484-4490. doi:10.1021/acsphotonics.8b00945

Li, E., Gao, Q., Chen, R. T., & Wang, A. X. (2018). Ultracompact Silicon-Conductive Oxide Nanocavity Modulator with 0.02 Lambda-Cubic Active Volume. Nano Letters, 18(2), 1075-1081. doi:10.1021/acs.nanolett.7b04588

Li, E., Gao, Q., Liverman, S., & Wang, A. X. (2018). One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Optics Letters, 43(18), 4429. doi:10.1364/ol.43.004429

Li, E., Nia, B. A., Zhou, B., & Wang, A. X. (2019). Transparent conductive oxide-gated silicon microring with extreme resonance wavelength tunability. Photonics Research, 7(4), 473. doi:10.1364/prj.7.000473

Hoessbacher, C., Fedoryshyn, Y., Emboras, A., Melikyan, A., Kohl, M., Hillerkuss, D., … Leuthold, J. (2014). The plasmonic memristor: a latching optical switch. Optica, 1(4), 198. doi:10.1364/optica.1.000198

Electron emission in intense electric fields. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181. doi:10.1098/rspa.1928.0091

Lin, H. C., Ye, P. D., & Wilk, G. D. (2005). Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Applied Physics Letters, 87(18), 182904. doi:10.1063/1.2120904

Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 89(10), 5243-5275. doi:10.1063/1.1361065

Vasudev, A. P., Kang, J.-H., Park, J., Liu, X., & Brongersma, M. L. (2013). Electro-optical modulation of a silicon waveguide with an «epsilon-near-zero» material. Optics Express, 21(22), 26387. doi:10.1364/oe.21.026387

Koch, U., Hoessbacher, C., Niegemann, J., Hafner, C., & Leuthold, J. (2016). Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides. IEEE Photonics Journal, 8(1), 1-13. doi:10.1109/jphot.2016.2518861

Gao, Q., Li, E., & Wang, A. X. (2018). Comparative analysis of transparent conductive oxide electro-absorption modulators [Invited]. Optical Materials Express, 8(9), 2850. doi:10.1364/ome.8.002850

Niemelä, J.-P., Marin, G., & Karppinen, M. (2017). Titanium dioxide thin films by atomic layer deposition: a review. Semiconductor Science and Technology, 32(9), 093005. doi:10.1088/1361-6641/aa78ce

Michelotti, F., Dominici, L., Descrovi, E., Danz, N., & Menchini, F. (2009). Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 155 μm. Optics Letters, 34(6), 839. doi:10.1364/ol.34.000839

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem