- -

Efficient trajectory of a car-like mobile robot

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient trajectory of a car-like mobile robot

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Besa Gonzálvez, Antonio José es_ES
dc.contributor.author Llopis Albert, Carlos es_ES
dc.date.accessioned 2020-12-19T04:31:53Z
dc.date.available 2020-12-19T04:31:53Z
dc.date.issued 2019 es_ES
dc.identifier.issn 0143-991X es_ES
dc.identifier.uri http://hdl.handle.net/10251/157500
dc.description This article is (c) Emerald Group Publishing and permission has been granted for this version to appear here https://riunet.upv.es/. Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited. es_ES
dc.description.abstract [EN] Purpose The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases. Design/methodology/approach An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented. Findings Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle's velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references. Research limitations/implications The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions. Practical implications One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles' trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained. Social implications The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases. Originality/value Originality comes from the fact that we not only look for the autonomous vehicle's modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots. es_ES
dc.language Inglés es_ES
dc.publisher Emerald es_ES
dc.relation.ispartof Industrial Robot An International Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Optimization es_ES
dc.subject Obstacle avoidance es_ES
dc.subject Car-like robot navigation es_ES
dc.subject Robot dynamics es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Efficient trajectory of a car-like mobile robot es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1108/IR-10-2018-0214 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Valero Chuliá, FJ.; Rubio Montoya, FJ.; Besa Gonzálvez, AJ.; Llopis Albert, C. (2019). Efficient trajectory of a car-like mobile robot. Industrial Robot An International Journal. 46(2):211-222. https://doi.org/10.1108/IR-10-2018-0214 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1108/IR-10-2018-0214 es_ES
dc.description.upvformatpinicio 211 es_ES
dc.description.upvformatpfin 222 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\395296 es_ES
dc.description.references Ghita, N., & Kloetzer, M. (2012). Trajectory planning for a car-like robot by environment abstraction. Robotics and Autonomous Systems, 60(4), 609-619. doi:10.1016/j.robot.2011.12.004 es_ES
dc.description.references Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416-442. doi:10.1016/j.trc.2015.09.011 es_ES
dc.description.references Li, B., & Shao, Z. (2015). Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots. Advances in Engineering Software, 87, 30-42. doi:10.1016/j.advengsoft.2015.04.011 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008 es_ES
dc.description.references Rubio, F., Valero, F., Lluís Sunyer, J., & Garrido, A. (2010). The simultaneous algorithm and the best interpolation function for trajectory planning. Industrial Robot: An International Journal, 37(5), 441-451. doi:10.1108/01439911011063263 es_ES
dc.description.references Sariff, N., & Buniyamin, N. (2006). An Overview of Autonomous Mobile Robot Path Planning Algorithms. 2006 4th Student Conference on Research and Development. doi:10.1109/scored.2006.4339335 es_ES
dc.description.references Renny Simba, K., Uchiyama, N., & Sano, S. (2016). Real-time smooth trajectory generation for nonholonomic mobile robots using Bézier curves. Robotics and Computer-Integrated Manufacturing, 41, 31-42. doi:10.1016/j.rcim.2016.02.002 es_ES
dc.description.references Tokekar, P., Karnad, N., & Isler, V. (2014). Energy-optimal trajectory planning for car-like robots. Autonomous Robots, 37(3), 279-300. doi:10.1007/s10514-014-9390-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem