Mostrar el registro sencillo del ítem
dc.contributor.author | Capilla Romá, Maria Teresa | es_ES |
dc.contributor.author | Talavera Usano, César Félix | es_ES |
dc.date.accessioned | 2020-12-19T04:32:32Z | |
dc.date.available | 2020-12-19T04:32:32Z | |
dc.date.issued | 2019-01-01 | es_ES |
dc.identifier.issn | 1084-7529 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157517 | |
dc.description | This paper was published in Optical Society of America. Journal A: Optics, Image Science, and Vision and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://doi.org/10.1364/JOSAA.36.000038. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | es_ES |
dc.description.abstract | [EN] The validity of the spherical harmonics-nodal collocation approximation to the stationary Boltzmann equation has been established in multi-dimensional neutron transport problems. This is a high-order approximation method that allows a coarse spatial discretization without losing accuracy. We extend the method to solve the time-dependent radiative transfer equation for absorbing media with anisotropic scattering, also incorporating to the model reflecting boundary conditions, due to the refractive index mismatching. The formalism is then applied to numerical test cases in one and two spatial dimensions that, using typical values in optical tomography for the physical parameters, check the accuracy and convergence of the method. | es_ES |
dc.description.sponsorship | Spanish Agencia Estatal de Investigacion (AEI) (ENE2017-89029-P-AR) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optical Society of America. Journal A: Optics, Image Science, and Vision | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Time-dependent radiative transfer equation | es_ES |
dc.subject | Multidimensional P_L equations | es_ES |
dc.subject | Spherical harmonics method | es_ES |
dc.subject | Nodal collocation method | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/JOSAA.36.000038 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Capilla Romá, MT.; Talavera Usano, CF. (2019). High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation. Optical Society of America. Journal A: Optics, Image Science, and Vision. 36(1):38-50. https://doi.org/10.1364/JOSAA.36.000038 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/JOSAA.36.000038 | es_ES |
dc.description.upvformatpinicio | 38 | es_ES |
dc.description.upvformatpfin | 50 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 30645337 | es_ES |
dc.relation.pasarela | S\373604 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Su, B., & Olson, G. L. (1997). An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Annals of Nuclear Energy, 24(13), 1035-1055. doi:10.1016/s0306-4549(96)00100-4 | es_ES |
dc.description.references | Klose, A. D., & Hielscher, A. H. (2008). Optical tomography with the equation of radiative transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 18(3/4), 443-464. doi:10.1108/09615530810853673 | es_ES |
dc.description.references | Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2012). Solution of the equation of radiative transfer using a Newton–Krylov approach and adaptive mesh refinement. Journal of Computational Physics, 231(8), 3023-3040. doi:10.1016/j.jcp.2011.11.016 | es_ES |
dc.description.references | Tapimo, R., Kamdem, H. T. T., & Yemele, D. (2018). Discrete spherical harmonics method for radiative transfer in scalar planar inhomogeneous atmosphere. Journal of the Optical Society of America A, 35(7), 1081. doi:10.1364/josaa.35.001081 | es_ES |
dc.description.references | Davison, B. (1960). ON THE RATE OF CONVERGENCE OF THE SPHERICAL HARMONICS METHOD: (FOR THE PLANE CASE, ISOTROPIC SCATTERING). Canadian Journal of Physics, 38(11), 1526-1545. doi:10.1139/p60-154 | es_ES |
dc.description.references | Katika, K. M., & Pilon, L. (2006). Modified method of characteristics in transient radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 98(2), 220-237. doi:10.1016/j.jqsrt.2005.05.086 | es_ES |
dc.description.references | Hielscher, A. H., Alcouffe, R. E., & Barbour, R. L. (1998). Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Physics in Medicine and Biology, 43(5), 1285-1302. doi:10.1088/0031-9155/43/5/017 | es_ES |
dc.description.references | Liu, L. H., & Liu, L. J. (2007). Discontinuous Finite Element Approach for Transient Radiative Transfer Equation. Journal of Heat Transfer, 129(8), 1069-1074. doi:10.1115/1.2737477 | es_ES |
dc.description.references | Aydin, E. D., Katsimichas, S., & de Oliveira, C. R. E. (2005). Time-dependent diffusion and transport calculations using a finite-element-spherical harmonics method. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(3), 349-363. doi:10.1016/j.jqsrt.2004.11.003 | es_ES |
dc.description.references | Chen, J.-S., Hillman, M., & Chi, S.-W. (2017). Meshfree Methods: Progress Made after 20 Years. Journal of Engineering Mechanics, 143(4), 04017001. doi:10.1061/(asce)em.1943-7889.0001176 | es_ES |
dc.description.references | Tan, Z.-M., & Hsu, P.-F. (2000). An Integral Formulation of Transient Radiative Transfer. Journal of Heat Transfer, 123(3), 466-475. doi:10.1115/1.1371230 | es_ES |
dc.description.references | Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0 | es_ES |
dc.description.references | Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004 | es_ES |
dc.description.references | Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014 | es_ES |
dc.description.references | Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328 | es_ES |