- -

High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capilla Romá, Maria Teresa es_ES
dc.contributor.author Talavera Usano, César Félix es_ES
dc.date.accessioned 2020-12-19T04:32:32Z
dc.date.available 2020-12-19T04:32:32Z
dc.date.issued 2019-01-01 es_ES
dc.identifier.issn 1084-7529 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157517
dc.description This paper was published in Optical Society of America. Journal A: Optics, Image Science, and Vision and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://doi.org/10.1364/JOSAA.36.000038. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] The validity of the spherical harmonics-nodal collocation approximation to the stationary Boltzmann equation has been established in multi-dimensional neutron transport problems. This is a high-order approximation method that allows a coarse spatial discretization without losing accuracy. We extend the method to solve the time-dependent radiative transfer equation for absorbing media with anisotropic scattering, also incorporating to the model reflecting boundary conditions, due to the refractive index mismatching. The formalism is then applied to numerical test cases in one and two spatial dimensions that, using typical values in optical tomography for the physical parameters, check the accuracy and convergence of the method. es_ES
dc.description.sponsorship Spanish Agencia Estatal de Investigacion (AEI) (ENE2017-89029-P-AR) es_ES
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optical Society of America. Journal A: Optics, Image Science, and Vision es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Time-dependent radiative transfer equation es_ES
dc.subject Multidimensional P_L equations es_ES
dc.subject Spherical harmonics method es_ES
dc.subject Nodal collocation method es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/JOSAA.36.000038 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Capilla Romá, MT.; Talavera Usano, CF. (2019). High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation. Optical Society of America. Journal A: Optics, Image Science, and Vision. 36(1):38-50. https://doi.org/10.1364/JOSAA.36.000038 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/JOSAA.36.000038 es_ES
dc.description.upvformatpinicio 38 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 30645337 es_ES
dc.relation.pasarela S\373604 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Su, B., & Olson, G. L. (1997). An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Annals of Nuclear Energy, 24(13), 1035-1055. doi:10.1016/s0306-4549(96)00100-4 es_ES
dc.description.references Klose, A. D., & Hielscher, A. H. (2008). Optical tomography with the equation of radiative transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 18(3/4), 443-464. doi:10.1108/09615530810853673 es_ES
dc.description.references Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2012). Solution of the equation of radiative transfer using a Newton–Krylov approach and adaptive mesh refinement. Journal of Computational Physics, 231(8), 3023-3040. doi:10.1016/j.jcp.2011.11.016 es_ES
dc.description.references Tapimo, R., Kamdem, H. T. T., & Yemele, D. (2018). Discrete spherical harmonics method for radiative transfer in scalar planar inhomogeneous atmosphere. Journal of the Optical Society of America A, 35(7), 1081. doi:10.1364/josaa.35.001081 es_ES
dc.description.references Davison, B. (1960). ON THE RATE OF CONVERGENCE OF THE SPHERICAL HARMONICS METHOD: (FOR THE PLANE CASE, ISOTROPIC SCATTERING). Canadian Journal of Physics, 38(11), 1526-1545. doi:10.1139/p60-154 es_ES
dc.description.references Katika, K. M., & Pilon, L. (2006). Modified method of characteristics in transient radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 98(2), 220-237. doi:10.1016/j.jqsrt.2005.05.086 es_ES
dc.description.references Hielscher, A. H., Alcouffe, R. E., & Barbour, R. L. (1998). Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Physics in Medicine and Biology, 43(5), 1285-1302. doi:10.1088/0031-9155/43/5/017 es_ES
dc.description.references Liu, L. H., & Liu, L. J. (2007). Discontinuous Finite Element Approach for Transient Radiative Transfer Equation. Journal of Heat Transfer, 129(8), 1069-1074. doi:10.1115/1.2737477 es_ES
dc.description.references Aydin, E. D., Katsimichas, S., & de Oliveira, C. R. E. (2005). Time-dependent diffusion and transport calculations using a finite-element-spherical harmonics method. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(3), 349-363. doi:10.1016/j.jqsrt.2004.11.003 es_ES
dc.description.references Chen, J.-S., Hillman, M., & Chi, S.-W. (2017). Meshfree Methods: Progress Made after 20 Years. Journal of Engineering Mechanics, 143(4), 04017001. doi:10.1061/(asce)em.1943-7889.0001176 es_ES
dc.description.references Tan, Z.-M., & Hsu, P.-F. (2000). An Integral Formulation of Transient Radiative Transfer. Journal of Heat Transfer, 123(3), 466-475. doi:10.1115/1.1371230 es_ES
dc.description.references Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004 es_ES
dc.description.references Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014 es_ES
dc.description.references Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem