- -

High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation

Mostrar el registro completo del ítem

Capilla Romá, MT.; Talavera Usano, CF. (2019). High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation. Optical Society of America. Journal A: Optics, Image Science, and Vision. 36(1):38-50. https://doi.org/10.1364/JOSAA.36.000038

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157517

Ficheros en el ítem

Metadatos del ítem

Título: High-order spherical harmonics-nodal collocation scheme for the numerical solution of the time-dependent radiative transfer equation
Autor: Capilla Romá, Maria Teresa Talavera Usano, César Félix
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The validity of the spherical harmonics-nodal collocation approximation to the stationary Boltzmann equation has been established in multi-dimensional neutron transport problems. This is a high-order approximation ...[+]
Palabras clave: Time-dependent radiative transfer equation , Multidimensional P_L equations , Spherical harmonics method , Nodal collocation method
Derechos de uso: Reserva de todos los derechos
Fuente:
Optical Society of America. Journal A: Optics, Image Science, and Vision. (issn: 1084-7529 )
DOI: 10.1364/JOSAA.36.000038
Editorial:
Optical Society of America
Versión del editor: https://doi.org/10.1364/JOSAA.36.000038
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-89029-P/ES/VERIFICACION, VALIDACION CUANTIFICACION DE INCERTIDUMBRES Y MEJORA DE LA PLATAFORMA NEUTRONICA%2FTERMOHIDRAULICA PANTHER/
Descripción: This paper was published in Optical Society of America. Journal A: Optics, Image Science, and Vision and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://doi.org/10.1364/JOSAA.36.000038. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Agradecimientos:
Spanish Agencia Estatal de Investigacion (AEI) (ENE2017-89029-P-AR)
Tipo: Artículo

References

Su, B., & Olson, G. L. (1997). An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Annals of Nuclear Energy, 24(13), 1035-1055. doi:10.1016/s0306-4549(96)00100-4

Klose, A. D., & Hielscher, A. H. (2008). Optical tomography with the equation of radiative transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 18(3/4), 443-464. doi:10.1108/09615530810853673

Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2012). Solution of the equation of radiative transfer using a Newton–Krylov approach and adaptive mesh refinement. Journal of Computational Physics, 231(8), 3023-3040. doi:10.1016/j.jcp.2011.11.016 [+]
Su, B., & Olson, G. L. (1997). An analytical benchmark for non-equilibrium radiative transfer in an isotropically scattering medium. Annals of Nuclear Energy, 24(13), 1035-1055. doi:10.1016/s0306-4549(96)00100-4

Klose, A. D., & Hielscher, A. H. (2008). Optical tomography with the equation of radiative transfer. International Journal of Numerical Methods for Heat & Fluid Flow, 18(3/4), 443-464. doi:10.1108/09615530810853673

Charest, M. R. J., Groth, C. P. T., & Gülder, Ö. L. (2012). Solution of the equation of radiative transfer using a Newton–Krylov approach and adaptive mesh refinement. Journal of Computational Physics, 231(8), 3023-3040. doi:10.1016/j.jcp.2011.11.016

Tapimo, R., Kamdem, H. T. T., & Yemele, D. (2018). Discrete spherical harmonics method for radiative transfer in scalar planar inhomogeneous atmosphere. Journal of the Optical Society of America A, 35(7), 1081. doi:10.1364/josaa.35.001081

Davison, B. (1960). ON THE RATE OF CONVERGENCE OF THE SPHERICAL HARMONICS METHOD: (FOR THE PLANE CASE, ISOTROPIC SCATTERING). Canadian Journal of Physics, 38(11), 1526-1545. doi:10.1139/p60-154

Katika, K. M., & Pilon, L. (2006). Modified method of characteristics in transient radiation transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 98(2), 220-237. doi:10.1016/j.jqsrt.2005.05.086

Hielscher, A. H., Alcouffe, R. E., & Barbour, R. L. (1998). Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Physics in Medicine and Biology, 43(5), 1285-1302. doi:10.1088/0031-9155/43/5/017

Liu, L. H., & Liu, L. J. (2007). Discontinuous Finite Element Approach for Transient Radiative Transfer Equation. Journal of Heat Transfer, 129(8), 1069-1074. doi:10.1115/1.2737477

Aydin, E. D., Katsimichas, S., & de Oliveira, C. R. E. (2005). Time-dependent diffusion and transport calculations using a finite-element-spherical harmonics method. Journal of Quantitative Spectroscopy and Radiative Transfer, 95(3), 349-363. doi:10.1016/j.jqsrt.2004.11.003

Chen, J.-S., Hillman, M., & Chi, S.-W. (2017). Meshfree Methods: Progress Made after 20 Years. Journal of Engineering Mechanics, 143(4), 04017001. doi:10.1061/(asce)em.1943-7889.0001176

Tan, Z.-M., & Hsu, P.-F. (2000). An Integral Formulation of Transient Radiative Transfer. Journal of Heat Transfer, 123(3), 466-475. doi:10.1115/1.1371230

Hébert, A. (1987). Development of the nodal collocation method for solving the neutron diffusion equation. Annals of Nuclear Energy, 14(10), 527-541. doi:10.1016/0306-4549(87)90074-0

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2005). A nodal collocation method for the calculation of the lambda modes of the PL equations. Annals of Nuclear Energy, 32(17), 1825-1853. doi:10.1016/j.anucene.2005.07.004

Capilla, M., Talavera, C. F., Ginestar, D., & Verdú, G. (2012). Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy, 40(1), 1-13. doi:10.1016/j.anucene.2011.09.014

Larsen, E. W., Morel, J. E., & McGhee, J. M. (1996). Asymptotic Derivation of the MultigroupP1and SimplifiedPNEquations with Anisotropic Scattering. Nuclear Science and Engineering, 123(3), 328-342. doi:10.13182/nse123-328

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem