Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9
Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151
Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002
[+]
Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9
Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151
Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002
Torregrosa, A. J., Broatch, A., Olmeda, P., & Romero, C. (2008). Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption. International Journal of Automotive Technology, 9(4), 447-458. doi:10.1007/s12239-008-0054-1
Weilenmann, M., Favez, J.-Y., & Alvarez, R. (2009). Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment, 43(15), 2419-2429. doi:10.1016/j.atmosenv.2009.02.005
Li, Q., Shayler, P., McGhee, M., & La Rocca, A. (2016). The initiation and development of combustion under cold idling conditions using a glow plug in diesel engines. International Journal of Engine Research, 18(3), 240-255. doi:10.1177/1468087416652266
Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391
Ludykar, D., Westerholm, R., & Almén, J. (1999). Cold start emissions at +22, −7 and −20°C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components. Science of The Total Environment, 235(1-3), 65-69. doi:10.1016/s0048-9697(99)00190-4
Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081
Dardiotis, C., Martini, G., Marotta, A., & Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468-478. doi:10.1016/j.apenergy.2013.04.093
Pavlovic, J., Marotta, A., & Ciuffo, B. (2016). CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy, 177, 661-670. doi:10.1016/j.apenergy.2016.05.110
Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091
Giakoumis, E., & Zachiotis, A. (2017). Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC. Energies, 10(2), 240. doi:10.3390/en10020240
Myung, C.-L., Jang, W., Kwon, S., Ko, J., Jin, D., & Park, S. (2017). Evaluation of the real-time de-NO x performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles. Energy, 132, 356-369. doi:10.1016/j.energy.2017.05.089
Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., & Fontaras, G. (2015). Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environmental Science & Technology, 49(14), 8315-8322. doi:10.1021/acs.est.5b01364
Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. doi:10.1016/j.applthermaleng.2017.10.138
Ko, J., Jin, D., Jang, W., Myung, C.-L., Kwon, S., & Park, S. (2017). Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 187, 652-662. doi:10.1016/j.apenergy.2016.11.105
Armas, O., García-Contreras, R., & Ramos, A. (2016). On-line thermodynamic diagnosis of diesel combustion process with paraffinic fuels in a vehicle tested under NEDC. Journal of Cleaner Production, 138, 94-102. doi:10.1016/j.jclepro.2016.01.023
Robinson, K., Ye, S., Yap, Y., & Kolaczkowski, S. T. (2013). Application of a methodology to assess the performance of a full-scale diesel oxidation catalyst during cold and hot start NEDC drive cycles. Chemical Engineering Research and Design, 91(7), 1292-1306. doi:10.1016/j.cherd.2013.02.022
Konstantas, G., & Stamatelos, A. (2004). Quality assurance of exhaust emissions test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(8), 901-914. doi:10.1243/0954407041581075
Pakko, J. D. (2009). Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution. SAE International Journal of Fuels and Lubricants, 2(1), 697-707. doi:10.4271/2009-01-1513
Flores, B. E. (1986). A pragmatic view of accuracy measurement in forecasting. Omega, 14(2), 93-98. doi:10.1016/0305-0483(86)90013-7
Kandylas, I. P., Stamatelos, A. M., & Dimitriadis, S. G. (1999). Statistical uncertainty in automotive emissions testing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 491-502. doi:10.1243/0954407991527053
Sileghem, L., Bosteels, D., May, J., Favre, C., & Verhelst, S. (2014). Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transportation Research Part D: Transport and Environment, 32, 70-85. doi:10.1016/j.trd.2014.07.008
Stefanopoulou, A. G., Kolmanovsky, I., & Freudenberg, J. S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control Systems Technology, 8(4), 733-745. doi:10.1109/87.852917
Control of diesel engines. (1998). IEEE Control Systems, 18(5), 53-71. doi:10.1109/37.722253
Peng, H., Cui, Y., Shi, L., & Deng, K. (2008). Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy, 33(3), 471-479. doi:10.1016/j.energy.2007.10.014
Bermúdez, V., Lujan, J. M., Pla, B., & Linares, W. G. (2011). Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine. Energy, 36(9), 5655-5665. doi:10.1016/j.energy.2011.06.061
Wang, S., Zhu, X., Somers, L. M. T., & de Goey, L. P. H. (2017). Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Conversion and Management, 149, 918-927. doi:10.1016/j.enconman.2017.03.087
Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029
[-]