Mostrar el registro sencillo del ítem
dc.contributor.author | Luján, José M. | es_ES |
dc.contributor.author | Climent, H. | es_ES |
dc.contributor.author | Ruiz-Rosales, Santiago | es_ES |
dc.contributor.author | Moratal, Ausias | es_ES |
dc.date.accessioned | 2020-12-22T04:31:32Z | |
dc.date.available | 2020-12-22T04:31:32Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157574 | |
dc.description | This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418792353 | es_ES |
dc.description.abstract | [EN] The effect of low ambient temperature on diesel raw pollutant emissions is analysed in two different driving cycles: NEDC and WLTC. The study is focused on hydrocarbons, carbon monoxide, nitrogen oxides and fuel consumption. Tests are conducted at cold start in a HSDI light-duty diesel engine with two levels of ambient temperature: 20 degrees C and -7 degrees C. Results showed a general detriment of pollutant emissions and break thermal efficiency at low ambient temperatures. NOx is increased around 250% in both cycles when running at low temperatures. Effect on hydrocarbons is more noticeable in the NEDC, where it rises in 270%, compared with the 150% of increase in the WLTC. In the case of carbon monoxide, uncorrelated tendencies are observed between both driving cycles. Concerning the NEDC, carbon monoxide emissions increase up to 125%, while at the WLTC, they are reduced up to 20%. Finally, from the point of view of the thermal efficiency, a reduction of nearly 10% in the NEDC is observed. However, no fuel penalty is spotted regarding the WLTC. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the 'Apoyo para la investigacion y Desarrollo (PAID)', grant for doctoral studies (FPI S1 2015 2512), of Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Diesel engine | es_ES |
dc.subject | Pollutant emissions | es_ES |
dc.subject | Fuel consumption | es_ES |
dc.subject | Cold conditions | es_ES |
dc.subject | Driving cycles | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418792353 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S1-2015-2512/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Luján, JM.; Climent, H.; Ruiz-Rosales, S.; Moratal, A. (2019). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. International Journal of Engine Research. 20(8-9):877-888. https://doi.org/10.1177/1468087418792353 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418792353 | es_ES |
dc.description.upvformatpinicio | 877 | es_ES |
dc.description.upvformatpfin | 888 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 8-9 | es_ES |
dc.relation.pasarela | S\408099 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9 | es_ES |
dc.description.references | Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151 | es_ES |
dc.description.references | Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002 | es_ES |
dc.description.references | Torregrosa, A. J., Broatch, A., Olmeda, P., & Romero, C. (2008). Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption. International Journal of Automotive Technology, 9(4), 447-458. doi:10.1007/s12239-008-0054-1 | es_ES |
dc.description.references | Weilenmann, M., Favez, J.-Y., & Alvarez, R. (2009). Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment, 43(15), 2419-2429. doi:10.1016/j.atmosenv.2009.02.005 | es_ES |
dc.description.references | Li, Q., Shayler, P., McGhee, M., & La Rocca, A. (2016). The initiation and development of combustion under cold idling conditions using a glow plug in diesel engines. International Journal of Engine Research, 18(3), 240-255. doi:10.1177/1468087416652266 | es_ES |
dc.description.references | Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391 | es_ES |
dc.description.references | Ludykar, D., Westerholm, R., & Almén, J. (1999). Cold start emissions at +22, −7 and −20°C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components. Science of The Total Environment, 235(1-3), 65-69. doi:10.1016/s0048-9697(99)00190-4 | es_ES |
dc.description.references | Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081 | es_ES |
dc.description.references | Dardiotis, C., Martini, G., Marotta, A., & Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468-478. doi:10.1016/j.apenergy.2013.04.093 | es_ES |
dc.description.references | Pavlovic, J., Marotta, A., & Ciuffo, B. (2016). CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy, 177, 661-670. doi:10.1016/j.apenergy.2016.05.110 | es_ES |
dc.description.references | Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091 | es_ES |
dc.description.references | Giakoumis, E., & Zachiotis, A. (2017). Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC. Energies, 10(2), 240. doi:10.3390/en10020240 | es_ES |
dc.description.references | Myung, C.-L., Jang, W., Kwon, S., Ko, J., Jin, D., & Park, S. (2017). Evaluation of the real-time de-NO x performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles. Energy, 132, 356-369. doi:10.1016/j.energy.2017.05.089 | es_ES |
dc.description.references | Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., & Fontaras, G. (2015). Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environmental Science & Technology, 49(14), 8315-8322. doi:10.1021/acs.est.5b01364 | es_ES |
dc.description.references | Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. doi:10.1016/j.applthermaleng.2017.10.138 | es_ES |
dc.description.references | Ko, J., Jin, D., Jang, W., Myung, C.-L., Kwon, S., & Park, S. (2017). Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 187, 652-662. doi:10.1016/j.apenergy.2016.11.105 | es_ES |
dc.description.references | Armas, O., García-Contreras, R., & Ramos, A. (2016). On-line thermodynamic diagnosis of diesel combustion process with paraffinic fuels in a vehicle tested under NEDC. Journal of Cleaner Production, 138, 94-102. doi:10.1016/j.jclepro.2016.01.023 | es_ES |
dc.description.references | Robinson, K., Ye, S., Yap, Y., & Kolaczkowski, S. T. (2013). Application of a methodology to assess the performance of a full-scale diesel oxidation catalyst during cold and hot start NEDC drive cycles. Chemical Engineering Research and Design, 91(7), 1292-1306. doi:10.1016/j.cherd.2013.02.022 | es_ES |
dc.description.references | Konstantas, G., & Stamatelos, A. (2004). Quality assurance of exhaust emissions test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(8), 901-914. doi:10.1243/0954407041581075 | es_ES |
dc.description.references | Pakko, J. D. (2009). Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution. SAE International Journal of Fuels and Lubricants, 2(1), 697-707. doi:10.4271/2009-01-1513 | es_ES |
dc.description.references | Flores, B. E. (1986). A pragmatic view of accuracy measurement in forecasting. Omega, 14(2), 93-98. doi:10.1016/0305-0483(86)90013-7 | es_ES |
dc.description.references | Kandylas, I. P., Stamatelos, A. M., & Dimitriadis, S. G. (1999). Statistical uncertainty in automotive emissions testing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 491-502. doi:10.1243/0954407991527053 | es_ES |
dc.description.references | Sileghem, L., Bosteels, D., May, J., Favre, C., & Verhelst, S. (2014). Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transportation Research Part D: Transport and Environment, 32, 70-85. doi:10.1016/j.trd.2014.07.008 | es_ES |
dc.description.references | Stefanopoulou, A. G., Kolmanovsky, I., & Freudenberg, J. S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control Systems Technology, 8(4), 733-745. doi:10.1109/87.852917 | es_ES |
dc.description.references | Control of diesel engines. (1998). IEEE Control Systems, 18(5), 53-71. doi:10.1109/37.722253 | es_ES |
dc.description.references | Peng, H., Cui, Y., Shi, L., & Deng, K. (2008). Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy, 33(3), 471-479. doi:10.1016/j.energy.2007.10.014 | es_ES |
dc.description.references | Bermúdez, V., Lujan, J. M., Pla, B., & Linares, W. G. (2011). Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine. Energy, 36(9), 5655-5665. doi:10.1016/j.energy.2011.06.061 | es_ES |
dc.description.references | Wang, S., Zhu, X., Somers, L. M. T., & de Goey, L. P. H. (2017). Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Conversion and Management, 149, 918-927. doi:10.1016/j.enconman.2017.03.087 | es_ES |
dc.description.references | Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029 | es_ES |