- -

Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luján, José M. es_ES
dc.contributor.author Climent, H. es_ES
dc.contributor.author Ruiz-Rosales, Santiago es_ES
dc.contributor.author Moratal, Ausias es_ES
dc.date.accessioned 2020-12-22T04:31:32Z
dc.date.available 2020-12-22T04:31:32Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157574
dc.description This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418792353 es_ES
dc.description.abstract [EN] The effect of low ambient temperature on diesel raw pollutant emissions is analysed in two different driving cycles: NEDC and WLTC. The study is focused on hydrocarbons, carbon monoxide, nitrogen oxides and fuel consumption. Tests are conducted at cold start in a HSDI light-duty diesel engine with two levels of ambient temperature: 20 degrees C and -7 degrees C. Results showed a general detriment of pollutant emissions and break thermal efficiency at low ambient temperatures. NOx is increased around 250% in both cycles when running at low temperatures. Effect on hydrocarbons is more noticeable in the NEDC, where it rises in 270%, compared with the 150% of increase in the WLTC. In the case of carbon monoxide, uncorrelated tendencies are observed between both driving cycles. Concerning the NEDC, carbon monoxide emissions increase up to 125%, while at the WLTC, they are reduced up to 20%. Finally, from the point of view of the thermal efficiency, a reduction of nearly 10% in the NEDC is observed. However, no fuel penalty is spotted regarding the WLTC. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the 'Apoyo para la investigacion y Desarrollo (PAID)', grant for doctoral studies (FPI S1 2015 2512), of Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel engine es_ES
dc.subject Pollutant emissions es_ES
dc.subject Fuel consumption es_ES
dc.subject Cold conditions es_ES
dc.subject Driving cycles es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418792353 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S1-2015-2512/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Luján, JM.; Climent, H.; Ruiz-Rosales, S.; Moratal, A. (2019). Influence of ambient temperature on diesel engine raw pollutants and fuel consumption in different driving cycles. International Journal of Engine Research. 20(8-9):877-888. https://doi.org/10.1177/1468087418792353 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418792353 es_ES
dc.description.upvformatpinicio 877 es_ES
dc.description.upvformatpfin 888 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 8-9 es_ES
dc.relation.pasarela S\408099 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Reşitoğlu, İ. A., Altinişik, K., & Keskin, A. (2014). The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technologies and Environmental Policy, 17(1), 15-27. doi:10.1007/s10098-014-0793-9 es_ES
dc.description.references Tan, Q., & Hu, Y. (2016). A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2. Applied Thermal Engineering, 108, 508-515. doi:10.1016/j.applthermaleng.2016.07.151 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Degraeuwe, B. (2006). Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 30(7), 633-641. doi:10.1016/j.expthermflusci.2006.01.002 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Olmeda, P., & Romero, C. (2008). Assessment of the influence of different cooling system configurations on engine warm-up, emissions and fuel consumption. International Journal of Automotive Technology, 9(4), 447-458. doi:10.1007/s12239-008-0054-1 es_ES
dc.description.references Weilenmann, M., Favez, J.-Y., & Alvarez, R. (2009). Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories. Atmospheric Environment, 43(15), 2419-2429. doi:10.1016/j.atmosenv.2009.02.005 es_ES
dc.description.references Li, Q., Shayler, P., McGhee, M., & La Rocca, A. (2016). The initiation and development of combustion under cold idling conditions using a glow plug in diesel engines. International Journal of Engine Research, 18(3), 240-255. doi:10.1177/1468087416652266 es_ES
dc.description.references Tauzia, X., Maiboom, A., Karaky, H., & Chesse, P. (2018). Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine. International Journal of Engine Research, 20(2), 247-260. doi:10.1177/1468087417749391 es_ES
dc.description.references Ludykar, D., Westerholm, R., & Almén, J. (1999). Cold start emissions at +22, −7 and −20°C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components. Science of The Total Environment, 235(1-3), 65-69. doi:10.1016/s0048-9697(99)00190-4 es_ES
dc.description.references Weilenmann, M., Soltic, P., Saxer, C., Forss, A.-M., & Heeb, N. (2005). Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures. Atmospheric Environment, 39(13), 2433-2441. doi:10.1016/j.atmosenv.2004.03.081 es_ES
dc.description.references Dardiotis, C., Martini, G., Marotta, A., & Manfredi, U. (2013). Low-temperature cold-start gaseous emissions of late technology passenger cars. Applied Energy, 111, 468-478. doi:10.1016/j.apenergy.2013.04.093 es_ES
dc.description.references Pavlovic, J., Marotta, A., & Ciuffo, B. (2016). CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Applied Energy, 177, 661-670. doi:10.1016/j.apenergy.2016.05.110 es_ES
dc.description.references Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., & Samaras, Z. (2016). Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Applied Energy, 179, 1152-1165. doi:10.1016/j.apenergy.2016.07.091 es_ES
dc.description.references Giakoumis, E., & Zachiotis, A. (2017). Investigation of a Diesel-Engined Vehicle’s Performance and Emissions during the WLTC Driving Cycle—Comparison with the NEDC. Energies, 10(2), 240. doi:10.3390/en10020240 es_ES
dc.description.references Myung, C.-L., Jang, W., Kwon, S., Ko, J., Jin, D., & Park, S. (2017). Evaluation of the real-time de-NO x performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles. Energy, 132, 356-369. doi:10.1016/j.energy.2017.05.089 es_ES
dc.description.references Marotta, A., Pavlovic, J., Ciuffo, B., Serra, S., & Fontaras, G. (2015). Gaseous Emissions from Light-Duty Vehicles: Moving from NEDC to the New WLTP Test Procedure. Environmental Science & Technology, 49(14), 8315-8322. doi:10.1021/acs.est.5b01364 es_ES
dc.description.references Luján, J. M., Climent, H., García-Cuevas, L. M., & Moratal, A. (2018). Pollutant emissions and diesel oxidation catalyst performance at low ambient temperatures in transient load conditions. Applied Thermal Engineering, 129, 1527-1537. doi:10.1016/j.applthermaleng.2017.10.138 es_ES
dc.description.references Ko, J., Jin, D., Jang, W., Myung, C.-L., Kwon, S., & Park, S. (2017). Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Applied Energy, 187, 652-662. doi:10.1016/j.apenergy.2016.11.105 es_ES
dc.description.references Armas, O., García-Contreras, R., & Ramos, A. (2016). On-line thermodynamic diagnosis of diesel combustion process with paraffinic fuels in a vehicle tested under NEDC. Journal of Cleaner Production, 138, 94-102. doi:10.1016/j.jclepro.2016.01.023 es_ES
dc.description.references Robinson, K., Ye, S., Yap, Y., & Kolaczkowski, S. T. (2013). Application of a methodology to assess the performance of a full-scale diesel oxidation catalyst during cold and hot start NEDC drive cycles. Chemical Engineering Research and Design, 91(7), 1292-1306. doi:10.1016/j.cherd.2013.02.022 es_ES
dc.description.references Konstantas, G., & Stamatelos, A. (2004). Quality assurance of exhaust emissions test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(8), 901-914. doi:10.1243/0954407041581075 es_ES
dc.description.references Pakko, J. D. (2009). Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution. SAE International Journal of Fuels and Lubricants, 2(1), 697-707. doi:10.4271/2009-01-1513 es_ES
dc.description.references Flores, B. E. (1986). A pragmatic view of accuracy measurement in forecasting. Omega, 14(2), 93-98. doi:10.1016/0305-0483(86)90013-7 es_ES
dc.description.references Kandylas, I. P., Stamatelos, A. M., & Dimitriadis, S. G. (1999). Statistical uncertainty in automotive emissions testing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 491-502. doi:10.1243/0954407991527053 es_ES
dc.description.references Sileghem, L., Bosteels, D., May, J., Favre, C., & Verhelst, S. (2014). Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transportation Research Part D: Transport and Environment, 32, 70-85. doi:10.1016/j.trd.2014.07.008 es_ES
dc.description.references Stefanopoulou, A. G., Kolmanovsky, I., & Freudenberg, J. S. (2000). Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control Systems Technology, 8(4), 733-745. doi:10.1109/87.852917 es_ES
dc.description.references Control of diesel engines. (1998). IEEE Control Systems, 18(5), 53-71. doi:10.1109/37.722253 es_ES
dc.description.references Peng, H., Cui, Y., Shi, L., & Deng, K. (2008). Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine. Energy, 33(3), 471-479. doi:10.1016/j.energy.2007.10.014 es_ES
dc.description.references Bermúdez, V., Lujan, J. M., Pla, B., & Linares, W. G. (2011). Effects of low pressure exhaust gas recirculation on regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine. Energy, 36(9), 5655-5665. doi:10.1016/j.energy.2011.06.061 es_ES
dc.description.references Wang, S., Zhu, X., Somers, L. M. T., & de Goey, L. P. H. (2017). Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Conversion and Management, 149, 918-927. doi:10.1016/j.enconman.2017.03.087 es_ES
dc.description.references Li, X., Xu, Z., Guan, C., & Huang, Z. (2014). Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load. Applied Thermal Engineering, 68(1-2), 100-106. doi:10.1016/j.applthermaleng.2014.04.029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem