Mostrar el registro sencillo del ítem
dc.contributor.author | Payri, Raul | es_ES |
dc.contributor.author | De La Morena, Joaquín | es_ES |
dc.contributor.author | Pagano, Vincenzo | es_ES |
dc.contributor.author | Hussain, Ali | es_ES |
dc.contributor.author | Sammut, Gilbert | es_ES |
dc.contributor.author | Smith, Les | es_ES |
dc.date.accessioned | 2020-12-22T04:32:01Z | |
dc.date.available | 2020-12-22T04:32:01Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157576 | |
dc.description | This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418760973 | es_ES |
dc.description.abstract | [EN] In this article, an investigation of a solenoid common-rail injector has been carried out to understand the hydraulic interactions between close-coupled injection events. For this purpose, a one-dimensional model of the injector was developed on GT-SUITE software. The geometrical and hydraulic characteristics of the internal elements of the injector, needed to construct the model, were obtained by means of different custom-made experimental tools. The dynamic behavior of the injector was characterized using an EVI rate of injection meter. The hydraulic results from the model show a good alignment with the experiments for single injections and a varied degree of success for multiple injections. Once the model was validated, it has been used to understand the injector performance under multiple-injection strategies. The mass of a second injection has shown to highly depend on the electrical dwell time, especially at low values, mostly due to the dynamic pressure behavior in the needle seat. The critical dwell time, defined as the minimum electrical dwell time needed to obtain two independent injection events, has been numerically obtained on a wide range of operating conditions and correlated to injection pressure and energizing time of the first injection. Finally, the increase in the needle opening velocity of the second injection compared to the single-injection case has been analyzed for close-coupled injection events. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to thank Jaguar Land Rover Limited for sponsoring this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Diesel | es_ES |
dc.subject | Injection | es_ES |
dc.subject | One-dimensional model | es_ES |
dc.subject | Multiple injections | es_ES |
dc.subject | Solenoid | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418760973 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Payri, R.; De La Morena, J.; Pagano, V.; Hussain, A.; Sammut, G.; Smith, L. (2019). One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research. 20(4):452-469. https://doi.org/10.1177/1468087418760973 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418760973 | es_ES |
dc.description.upvformatpinicio | 452 | es_ES |
dc.description.upvformatpfin | 469 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\380119 | es_ES |
dc.contributor.funder | Jaguar Land Rover Limited | es_ES |
dc.description.references | Khalek, I. A., Blanks, M. G., Merritt, P. M., & Zielinska, B. (2015). Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines. Journal of the Air & Waste Management Association, 65(8), 987-1001. doi:10.1080/10962247.2015.1051606 | es_ES |
dc.description.references | Kim, H. J., Park, S. H., & Lee, C. S. (2016). Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine. Energy, 107, 572-579. doi:10.1016/j.energy.2016.04.035 | es_ES |
dc.description.references | Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009 | es_ES |
dc.description.references | Payri, R., Viera, J. P., Gopalakrishnan, V., & Szymkowicz, P. G. (2016). The effect of nozzle geometry over internal flow and spray formation for three different fuels. Fuel, 183, 20-33. doi:10.1016/j.fuel.2016.06.041 | es_ES |
dc.description.references | Hulkkonen, T., Sarjovaara, T., Kaario, O., Hamalainen, I., & Larmi, M. (2015). EXPERIMENTAL STUDY OF CONICAL DIESEL NOZZLE ORIFICE GEOMETRY. Atomization and Sprays, 25(6), 519-538. doi:10.1615/atomizspr.2015010383 | es_ES |
dc.description.references | Kuti, O. A., Zhu, J., Nishida, K., Wang, X., & Huang, Z. (2013). Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel, 104, 838-846. doi:10.1016/j.fuel.2012.05.014 | es_ES |
dc.description.references | Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006 | es_ES |
dc.description.references | Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035 | es_ES |
dc.description.references | Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. I., Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302-314. doi:10.1016/j.enconman.2014.12.004 | es_ES |
dc.description.references | Zhuang, J., Qiao, X., Bai, J., & Hu, Z. (2014). Effect of injection-strategy on combustion, performance and emission characteristics in a DI-diesel engine fueled with diesel from direct coal liquefaction. Fuel, 121, 141-148. doi:10.1016/j.fuel.2013.12.032 | es_ES |
dc.description.references | Park, S. H., Yoon, S. H., & Lee, C. S. (2011). Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel. Applied Energy, 88(1), 88-98. doi:10.1016/j.apenergy.2010.07.024 | es_ES |
dc.description.references | Mancaruso, E., Sequino, L., & Vaglieco, B. M. (2016). Analysis of the pilot injection running Common Rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel, 178, 188-201. doi:10.1016/j.fuel.2016.03.066 | es_ES |
dc.description.references | O’Connor, J., & Musculus, M. (2013). Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding. SAE International Journal of Engines, 6(1), 400-421. doi:10.4271/2013-01-0917 | es_ES |
dc.description.references | Bosch, W. (1966). The Fuel Rate Indicator: A New Measuring Instrument For Display of the Characteristics of Individual Injection. SAE Technical Paper Series. doi:10.4271/660749 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x | es_ES |