- -

One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Payri, Raul es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Pagano, Vincenzo es_ES
dc.contributor.author Hussain, Ali es_ES
dc.contributor.author Sammut, Gilbert es_ES
dc.contributor.author Smith, Les es_ES
dc.date.accessioned 2020-12-22T04:32:01Z
dc.date.available 2020-12-22T04:32:01Z
dc.date.issued 2019-04 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157576
dc.description This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418760973 es_ES
dc.description.abstract [EN] In this article, an investigation of a solenoid common-rail injector has been carried out to understand the hydraulic interactions between close-coupled injection events. For this purpose, a one-dimensional model of the injector was developed on GT-SUITE software. The geometrical and hydraulic characteristics of the internal elements of the injector, needed to construct the model, were obtained by means of different custom-made experimental tools. The dynamic behavior of the injector was characterized using an EVI rate of injection meter. The hydraulic results from the model show a good alignment with the experiments for single injections and a varied degree of success for multiple injections. Once the model was validated, it has been used to understand the injector performance under multiple-injection strategies. The mass of a second injection has shown to highly depend on the electrical dwell time, especially at low values, mostly due to the dynamic pressure behavior in the needle seat. The critical dwell time, defined as the minimum electrical dwell time needed to obtain two independent injection events, has been numerically obtained on a wide range of operating conditions and correlated to injection pressure and energizing time of the first injection. Finally, the increase in the needle opening velocity of the second injection compared to the single-injection case has been analyzed for close-coupled injection events. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors would like to thank Jaguar Land Rover Limited for sponsoring this work. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel es_ES
dc.subject Injection es_ES
dc.subject One-dimensional model es_ES
dc.subject Multiple injections es_ES
dc.subject Solenoid es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418760973 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Payri, R.; De La Morena, J.; Pagano, V.; Hussain, A.; Sammut, G.; Smith, L. (2019). One-dimensional modeling of the interaction between close-coupled injection events for a ballistic solenoid injector. International Journal of Engine Research. 20(4):452-469. https://doi.org/10.1177/1468087418760973 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418760973 es_ES
dc.description.upvformatpinicio 452 es_ES
dc.description.upvformatpfin 469 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\380119 es_ES
dc.contributor.funder Jaguar Land Rover Limited es_ES
dc.description.references Khalek, I. A., Blanks, M. G., Merritt, P. M., & Zielinska, B. (2015). Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines. Journal of the Air & Waste Management Association, 65(8), 987-1001. doi:10.1080/10962247.2015.1051606 es_ES
dc.description.references Kim, H. J., Park, S. H., & Lee, C. S. (2016). Impact of fuel spray angles and injection timing on the combustion and emission characteristics of a high-speed diesel engine. Energy, 107, 572-579. doi:10.1016/j.energy.2016.04.035 es_ES
dc.description.references Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & de la Morena, J. (2009). Effects of nozzle geometry on direct injection diesel engine combustion process. Applied Thermal Engineering, 29(10), 2051-2060. doi:10.1016/j.applthermaleng.2008.10.009 es_ES
dc.description.references Payri, R., Viera, J. P., Gopalakrishnan, V., & Szymkowicz, P. G. (2016). The effect of nozzle geometry over internal flow and spray formation for three different fuels. Fuel, 183, 20-33. doi:10.1016/j.fuel.2016.06.041 es_ES
dc.description.references Hulkkonen, T., Sarjovaara, T., Kaario, O., Hamalainen, I., & Larmi, M. (2015). EXPERIMENTAL STUDY OF CONICAL DIESEL NOZZLE ORIFICE GEOMETRY. Atomization and Sprays, 25(6), 519-538. doi:10.1615/atomizspr.2015010383 es_ES
dc.description.references Kuti, O. A., Zhu, J., Nishida, K., Wang, X., & Huang, Z. (2013). Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel, 104, 838-846. doi:10.1016/j.fuel.2012.05.014 es_ES
dc.description.references Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006 es_ES
dc.description.references Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035 es_ES
dc.description.references Agarwal, A. K., Dhar, A., Gupta, J. G., Kim, W. I., Choi, K., Lee, C. S., & Park, S. (2015). Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics. Energy Conversion and Management, 91, 302-314. doi:10.1016/j.enconman.2014.12.004 es_ES
dc.description.references Zhuang, J., Qiao, X., Bai, J., & Hu, Z. (2014). Effect of injection-strategy on combustion, performance and emission characteristics in a DI-diesel engine fueled with diesel from direct coal liquefaction. Fuel, 121, 141-148. doi:10.1016/j.fuel.2013.12.032 es_ES
dc.description.references Park, S. H., Yoon, S. H., & Lee, C. S. (2011). Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel. Applied Energy, 88(1), 88-98. doi:10.1016/j.apenergy.2010.07.024 es_ES
dc.description.references Mancaruso, E., Sequino, L., & Vaglieco, B. M. (2016). Analysis of the pilot injection running Common Rail strategies in a research diesel engine by means of infrared diagnostics and 1d model. Fuel, 178, 188-201. doi:10.1016/j.fuel.2016.03.066 es_ES
dc.description.references O’Connor, J., & Musculus, M. (2013). Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding. SAE International Journal of Engines, 6(1), 400-421. doi:10.4271/2013-01-0917 es_ES
dc.description.references Bosch, W. (1966). The Fuel Rate Indicator: A New Measuring Instrument For Display of the Characteristics of Individual Injection. SAE Technical Paper Series. doi:10.4271/660749 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem