- -

A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part II)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part II)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hidalga-García-Bermejo, Patricio es_ES
dc.contributor.author Abarca Giménez, Agustín es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author SEKHRI, ABDELKRIM es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2020-12-22T04:32:16Z
dc.date.available 2020-12-22T04:32:16Z
dc.date.issued 2019-08-15 es_ES
dc.identifier.issn 0029-5493 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157578
dc.description.abstract [EN] The development of the computer technology, as well as the research in the different science fields governing the core behavior of a Light Water Reactor, allows implementing all the known physics and consider detailed scales of analysis. Conversely to conservative approaches, the Best Estimate approach applies the available science by means of models and correlations that are applied in different scales using simulation tools. With this approach, the critical elements of the core can be evaluated with realistic predictions that can adjust the operation conditions and core design to more cost-efficient values without compromising the safety of the Nuclear Power Plant. The authors of this paper present the second part of a multi-scale and multi-physics methodology for the evaluation of fast transients in Light Water Reactors. In this part, the results obtained from the coupled Neutron Kinetics and Thermal-Hydraulics channel-by-channel core model are used for a detailed thermal-hydraulic pin-by-pin analysis and thermomechanics pin model. The aim of this work is to evaluate the safety analysis of the critical fuel rod in Turbine Trip scenario. For that purpose, the critical fuel rod is located using the minimum Critical Power Ratio. This safety variable is predicted in a thermal-hydraulic pin-by-pin model using CTF-UPVIS code. Afterwards, the conditions of the critical rod are loaded in a pin model for a simulation with FRAPCON/FRAPTRAN. Moreover, this paper proves the Best Estimate capability of the presented methodology by means of comparing the results with equivalent simulations that are more conservative, or consist of more limited simulation scales. On the one hand, the Best Estimate prediction is compared against the envelope of the minimum Critical Power Ratio along the axial nodal distribution of the simulated fuel rod. In addition, another comparison is made against assuming constant fuel-cladding gas conductance, showing the enhancement added by considering the axial distribution of this parameter, provided by FRAPCON/FRAPTRAN. On the other hand, the results of this methodology are compared against the limitation of accounting only the bundle radial average value of the minimum Critical Power Ratio. Furthermore, the Best Estimate results are complemented with an Uncertainty and Sensitivity analysis that will define the statistical boundaries of the prediction according to the 95/95 criterion. es_ES
dc.description.sponsorship The authors of this paper acknowledge the technical and economic support of KKL that made possible this project. The acknowledgement is extended to the collaboration of KKL in the research tasks by sharing plant measurements to validate the methodology and to use their software resources to generate useful data for the code-to-code verification. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Nuclear Engineering and Design es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Simulation methodology es_ES
dc.subject LWR safety analysis es_ES
dc.subject Turbine Trip es_ES
dc.subject CTF-UPVIS es_ES
dc.subject FRAPCON/FRAPTRAN es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part II) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.nucengdes.2019.05.009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2012-34585/ES/Desarrollo de una plataforma multifísica de altas prestaciones para simulaciones Termohidráulico-Neutrónicas en ingeniería nuclear/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Hidalga-García-Bermejo, P.; Abarca Giménez, A.; Miró Herrero, R.; Sekhri, A.; Verdú Martín, GJ. (2019). A multi-scale and multi-physics simulation methodology with the state-of-the-art tools for safety analysis in Light Water Reactors applied to a Turbine Trip scenario (Part II). Nuclear Engineering and Design. 350:205-213. https://doi.org/10.1016/j.nucengdes.2019.05.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.nucengdes.2019.05.009 es_ES
dc.description.upvformatpinicio 205 es_ES
dc.description.upvformatpfin 213 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 350 es_ES
dc.relation.pasarela S\408148 es_ES
dc.contributor.funder Kernkraftwerk Leibstadt AG es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem