- -

Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Broatch, A. es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Blanco-Cavero, Diego es_ES
dc.contributor.author Warey, Alok es_ES
dc.contributor.author Domenech, Vicent es_ES
dc.date.accessioned 2020-12-22T04:32:49Z
dc.date.available 2020-12-22T04:32:49Z
dc.date.issued 2019-10 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157584
dc.description This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418779726 es_ES
dc.description.abstract [EN] Increasing internal combustion engine efficiency continues being one of the main goals of engine research. To achieve this objective, different engine strategies are being developed continuously. However, the assessment of these techniques is not straightforward due to their influence on various intermediate phenomena inherent to the combustion process, which finally result in indicated efficiency trade-offs. During this work, a new methodology to assess these intermediate imperfections on gross indicated efficiency using a zero-dimensional model is developed. This methodology is applied to a swirl parametric study, where it has been concluded that the heat transfer and the rate of heat release are the single relevant changing phenomena. Results show that heat transfer always increases with swirl affecting negatively gross indicated efficiency (around -0.5%), while the impact of combustion velocity is not monotonous. It is enhanced up to a certain swirl ratio (it changes with engine speed) at low engine speed (resulting in an increment of +1.7% in gross indicated efficiency), but it is slowed down at high engine speed with the consequent worsening of gross indicated efficiency (-0.8%). es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2013-41348-R. D. B.-C. was partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Internal combustion engine es_ES
dc.subject Combustion analysis es_ES
dc.subject Efficiency es_ES
dc.subject Heat transfer es_ES
dc.subject Split of losses es_ES
dc.subject Swirl es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418779726 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1356/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2013-41348-R/ES/EVALUACION DEL EFECTO DE LA TRANSMISION DE CALOR EN LA CAMARA SOBRE LA EFICIENCIA DE MOTORES DIESEL DE PEQUEÑA CILINDRADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Broatch, A.; Martín, J.; García Martínez, A.; Blanco-Cavero, D.; Warey, A.; Domenech, V. (2019). Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency. International Journal of Engine Research. 20(8-9):837-848. https://doi.org/10.1177/1468087418779726 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418779726 es_ES
dc.description.upvformatpinicio 837 es_ES
dc.description.upvformatpfin 848 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 8-9 es_ES
dc.relation.pasarela S\367447 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051 es_ES
dc.description.references Agarwal, A. K., Srivastava, D. K., Dhar, A., Maurya, R. K., Shukla, P. C., & Singh, A. P. (2013). Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel, 111, 374-383. doi:10.1016/j.fuel.2013.03.016 es_ES
dc.description.references Hiwase, S. D., Moorthy, S., Prasad, H., Dumpa, M., & Metkar, R. M. (2013). Multidimensional Modeling of Direct Injection Diesel Engine with Split Multiple Stage Fuel Injections. Procedia Engineering, 51, 670-675. doi:10.1016/j.proeng.2013.01.095 es_ES
dc.description.references Canakci, M. (2012). Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures. Fuel, 96, 546-555. doi:10.1016/j.fuel.2012.01.042 es_ES
dc.description.references Pan, M., Shu, G., Wei, H., Zhu, T., Liang, Y., & Liu, C. (2014). Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Applied Thermal Engineering, 64(1-2), 491-498. doi:10.1016/j.applthermaleng.2013.11.013 es_ES
dc.description.references Fontana, G., & Galloni, E. (2010). Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation. Applied Energy, 87(7), 2187-2193. doi:10.1016/j.apenergy.2009.11.022 es_ES
dc.description.references Verhelst, S., Demuynck, J., Sierens, R., & Huyskens, P. (2010). Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. International Journal of Hydrogen Energy, 35(9), 4399-4408. doi:10.1016/j.ijhydene.2010.02.022 es_ES
dc.description.references Fontana, G., & Galloni, E. (2009). Variable valve timing for fuel economy improvement in a small spark-ignition engine. Applied Energy, 86(1), 96-105. doi:10.1016/j.apenergy.2008.04.009 es_ES
dc.description.references Perini, F., Miles, P. C., & Reitz, R. D. (2014). A comprehensive modeling study of in-cylinder fluid flows in a high-swirl, light-duty optical diesel engine. Computers & Fluids, 105, 113-124. doi:10.1016/j.compfluid.2014.09.011 es_ES
dc.description.references Wei, S., Wang, F., Leng, X., Liu, X., & Ji, K. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines. Energy Conversion and Management, 75, 184-190. doi:10.1016/j.enconman.2013.05.044 es_ES
dc.description.references Olmeda, P., Martín, J., Blanco-Cavero, D., Warey, A., & Domenech, V. (2017). Effect of in-cylinder swirl on engine efficiency and heat rejection in a light-duty diesel engine. International Journal of Engine Research, 18(1-2), 81-92. doi:10.1177/1468087417693078 es_ES
dc.description.references Sandalcı, T., & Karagöz, Y. (2014). Experimental investigation of the combustion characteristics, emissions and performance of hydrogen port fuel injection in a diesel engine. International Journal of Hydrogen Energy, 39(32), 18480-18489. doi:10.1016/j.ijhydene.2014.09.044 es_ES
dc.description.references Sorate, K. A., & Bhale, P. V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews, 41, 777-798. doi:10.1016/j.rser.2014.08.079 es_ES
dc.description.references Ryan, T. W., & Callahan, T. J. (1996). Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Technical Paper Series. doi:10.4271/961160 es_ES
dc.description.references Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011 es_ES
dc.description.references Ramesh, A. K., Shaver, G. M., Allen, C. M., Nayyar, S., Gosala, D. B., Caicedo Parra, D., … Nielsen, D. (2017). Utilizing low airflow strategies, including cylinder deactivation, to improve fuel efficiency and aftertreatment thermal management. International Journal of Engine Research, 18(10), 1005-1016. doi:10.1177/1468087417695897 es_ES
dc.description.references Shelby, M. H., Leone, T. G., Byrd, K. D., & Wong, F. K. (2017). Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles. SAE International Journal of Engines, 10(3), 817-831. doi:10.4271/2017-01-0639 es_ES
dc.description.references Yamasaki, Y., Ikemura, R., & Kaneko, S. (2017). Model-based control of diesel engines with multiple fuel injections. International Journal of Engine Research, 19(2), 257-265. doi:10.1177/1468087417747738 es_ES
dc.description.references Weberbauer, F., Rauscher, M., Kulzer, A., Knopf, M., & Bargende, M. (2005). Generally applicate split of losses for new combustion concepts. MTZ worldwide, 66(2), 17-19. doi:10.1007/bf03227736 es_ES
dc.description.references Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem