Mostrar el registro sencillo del ítem
dc.contributor.author | Broatch, A. | es_ES |
dc.contributor.author | Martín, Jaime | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Blanco-Cavero, Diego | es_ES |
dc.contributor.author | Warey, Alok | es_ES |
dc.contributor.author | Domenech, Vicent | es_ES |
dc.date.accessioned | 2020-12-22T04:32:49Z | |
dc.date.available | 2020-12-22T04:32:49Z | |
dc.date.issued | 2019-10 | es_ES |
dc.identifier.issn | 1468-0874 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157584 | |
dc.description | This is the author s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418779726 | es_ES |
dc.description.abstract | [EN] Increasing internal combustion engine efficiency continues being one of the main goals of engine research. To achieve this objective, different engine strategies are being developed continuously. However, the assessment of these techniques is not straightforward due to their influence on various intermediate phenomena inherent to the combustion process, which finally result in indicated efficiency trade-offs. During this work, a new methodology to assess these intermediate imperfections on gross indicated efficiency using a zero-dimensional model is developed. This methodology is applied to a swirl parametric study, where it has been concluded that the heat transfer and the rate of heat release are the single relevant changing phenomena. Results show that heat transfer always increases with swirl affecting negatively gross indicated efficiency (around -0.5%), while the impact of combustion velocity is not monotonous. It is enhanced up to a certain swirl ratio (it changes with engine speed) at low engine speed (resulting in an increment of +1.7% in gross indicated efficiency), but it is slowed down at high engine speed with the consequent worsening of gross indicated efficiency (-0.8%). | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2013-41348-R. D. B.-C. was partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Engine Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Internal combustion engine | es_ES |
dc.subject | Combustion analysis | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject | Heat transfer | es_ES |
dc.subject | Split of losses | es_ES |
dc.subject | Swirl | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1468087418779726 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1356/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2013-41348-R/ES/EVALUACION DEL EFECTO DE LA TRANSMISION DE CALOR EN LA CAMARA SOBRE LA EFICIENCIA DE MOTORES DIESEL DE PEQUEÑA CILINDRADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Broatch, A.; Martín, J.; García Martínez, A.; Blanco-Cavero, D.; Warey, A.; Domenech, V. (2019). Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency. International Journal of Engine Research. 20(8-9):837-848. https://doi.org/10.1177/1468087418779726 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1468087418779726 | es_ES |
dc.description.upvformatpinicio | 837 | es_ES |
dc.description.upvformatpfin | 848 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 8-9 | es_ES |
dc.relation.pasarela | S\367447 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Mohan, B., Yang, W., & Chou, S. kiang. (2013). Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renewable and Sustainable Energy Reviews, 28, 664-676. doi:10.1016/j.rser.2013.08.051 | es_ES |
dc.description.references | Agarwal, A. K., Srivastava, D. K., Dhar, A., Maurya, R. K., Shukla, P. C., & Singh, A. P. (2013). Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel, 111, 374-383. doi:10.1016/j.fuel.2013.03.016 | es_ES |
dc.description.references | Hiwase, S. D., Moorthy, S., Prasad, H., Dumpa, M., & Metkar, R. M. (2013). Multidimensional Modeling of Direct Injection Diesel Engine with Split Multiple Stage Fuel Injections. Procedia Engineering, 51, 670-675. doi:10.1016/j.proeng.2013.01.095 | es_ES |
dc.description.references | Canakci, M. (2012). Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures. Fuel, 96, 546-555. doi:10.1016/j.fuel.2012.01.042 | es_ES |
dc.description.references | Pan, M., Shu, G., Wei, H., Zhu, T., Liang, Y., & Liu, C. (2014). Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Applied Thermal Engineering, 64(1-2), 491-498. doi:10.1016/j.applthermaleng.2013.11.013 | es_ES |
dc.description.references | Fontana, G., & Galloni, E. (2010). Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation. Applied Energy, 87(7), 2187-2193. doi:10.1016/j.apenergy.2009.11.022 | es_ES |
dc.description.references | Verhelst, S., Demuynck, J., Sierens, R., & Huyskens, P. (2010). Impact of variable valve timing on power, emissions and backfire of a bi-fuel hydrogen/gasoline engine. International Journal of Hydrogen Energy, 35(9), 4399-4408. doi:10.1016/j.ijhydene.2010.02.022 | es_ES |
dc.description.references | Fontana, G., & Galloni, E. (2009). Variable valve timing for fuel economy improvement in a small spark-ignition engine. Applied Energy, 86(1), 96-105. doi:10.1016/j.apenergy.2008.04.009 | es_ES |
dc.description.references | Perini, F., Miles, P. C., & Reitz, R. D. (2014). A comprehensive modeling study of in-cylinder fluid flows in a high-swirl, light-duty optical diesel engine. Computers & Fluids, 105, 113-124. doi:10.1016/j.compfluid.2014.09.011 | es_ES |
dc.description.references | Wei, S., Wang, F., Leng, X., Liu, X., & Ji, K. (2013). Numerical analysis on the effect of swirl ratios on swirl chamber combustion system of DI diesel engines. Energy Conversion and Management, 75, 184-190. doi:10.1016/j.enconman.2013.05.044 | es_ES |
dc.description.references | Olmeda, P., Martín, J., Blanco-Cavero, D., Warey, A., & Domenech, V. (2017). Effect of in-cylinder swirl on engine efficiency and heat rejection in a light-duty diesel engine. International Journal of Engine Research, 18(1-2), 81-92. doi:10.1177/1468087417693078 | es_ES |
dc.description.references | Sandalcı, T., & Karagöz, Y. (2014). Experimental investigation of the combustion characteristics, emissions and performance of hydrogen port fuel injection in a diesel engine. International Journal of Hydrogen Energy, 39(32), 18480-18489. doi:10.1016/j.ijhydene.2014.09.044 | es_ES |
dc.description.references | Sorate, K. A., & Bhale, P. V. (2015). Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews, 41, 777-798. doi:10.1016/j.rser.2014.08.079 | es_ES |
dc.description.references | Ryan, T. W., & Callahan, T. J. (1996). Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Technical Paper Series. doi:10.4271/961160 | es_ES |
dc.description.references | Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011 | es_ES |
dc.description.references | Ramesh, A. K., Shaver, G. M., Allen, C. M., Nayyar, S., Gosala, D. B., Caicedo Parra, D., … Nielsen, D. (2017). Utilizing low airflow strategies, including cylinder deactivation, to improve fuel efficiency and aftertreatment thermal management. International Journal of Engine Research, 18(10), 1005-1016. doi:10.1177/1468087417695897 | es_ES |
dc.description.references | Shelby, M. H., Leone, T. G., Byrd, K. D., & Wong, F. K. (2017). Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles. SAE International Journal of Engines, 10(3), 817-831. doi:10.4271/2017-01-0639 | es_ES |
dc.description.references | Yamasaki, Y., Ikemura, R., & Kaneko, S. (2017). Model-based control of diesel engines with multiple fuel injections. International Journal of Engine Research, 19(2), 257-265. doi:10.1177/1468087417747738 | es_ES |
dc.description.references | Weberbauer, F., Rauscher, M., Kulzer, A., Knopf, M., & Bargende, M. (2005). Generally applicate split of losses for new combustion concepts. MTZ worldwide, 66(2), 17-19. doi:10.1007/bf03227736 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Guardiola, C., & Martín, J. (2011). Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 31(14-15), 2869-2876. doi:10.1016/j.applthermaleng.2011.05.012 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 | es_ES |
dc.description.references | Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 | es_ES |
dc.description.references | Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 | es_ES |