- -

Design of a polishing tool for collaborative robotics using minimum viable product approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of a polishing tool for collaborative robotics using minimum viable product approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perez-Vidal, Carlos es_ES
dc.contributor.author Gracia Calandin, Luis Ignacio es_ES
dc.contributor.author Sanchez-Caballero, Samuel es_ES
dc.contributor.author Solanes Galbis, Juan Ernesto es_ES
dc.contributor.author Saccon, Alessandro es_ES
dc.contributor.author Tornero Montserrat, Josep es_ES
dc.date.accessioned 2020-12-22T04:33:01Z
dc.date.available 2020-12-22T04:33:01Z
dc.date.issued 2019-09-02 es_ES
dc.identifier.issn 0951-192X es_ES
dc.identifier.uri http://hdl.handle.net/10251/157588
dc.description This is an Author's Accepted Manuscript of an article published in Carlos Perez-Vidal, Luis Gracia, Samuel Sanchez-Caballero, J. Ernesto Solanes, Alessandro Saccon & Josep Tornero (2019) Design of a polishing tool for collaborative robotics using minimum viable product approach, International Journal of Computer Integrated Manufacturing, 32:9, 848-857, DOI: 10.1080/0951192X.2019.1637026 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/0951192X.2019.1637026 es_ES
dc.description.abstract [EN] A collaborative tool for robotic polishing is developed in this work in order to allow the simultaneous operation of the robot system and human operator to cooperatively carry out the polishing task. For this purpose, the collaborative environment is detailed and the polishing application is designed. Moreover, the polishing tool is developed and its implementation using the minimum viable product approach is obtained. Furthermore, a robust hybrid position-force control is proposed to use the developed tool attached to a robot system and some experiments are given to show its performance. es_ES
dc.description.sponsorship This work was supported in part by the Ministerio de Ciencia e Innovacion (Spanish Government) under project [DPI2017-87656-C2-1-R] and the Generalitat Valenciana under Grant [VALi+ d APOSTD/2016/044]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Integrated Manufacturing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polishing tool es_ES
dc.subject Cooperative polishing es_ES
dc.subject Human-robot cooperation es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Design of a polishing tool for collaborative robotics using minimum viable product approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/0951192X.2019.1637026 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-87656-C2-1-R/ES/VISION ARTIFICIAL Y ROBOTICA COLABORATIVA EN PULIDO DE SUPERFICIES EN LA INDUSTRIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F007/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Perez-Vidal, C.; Gracia Calandin, LI.; Sanchez-Caballero, S.; Solanes Galbis, JE.; Saccon, A.; Tornero Montserrat, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing. 32(9):848-857. https://doi.org/10.1080/0951192X.2019.1637026 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/0951192X.2019.1637026 es_ES
dc.description.upvformatpinicio 848 es_ES
dc.description.upvformatpfin 857 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\392937 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Alders, K., M. Lehe, and G. Wan. 2001. “Method for the Automatic Recognition of Surface Defects in Body Shells and Device for Carrying Out Said Method” US Patent 6,320,654, Accessed 2001 November. https://www.google.ch/patents/US6320654 es_ES
dc.description.references Alexopoulos, K., Mavrikios, D., & Chryssolouris, G. (2013). ErgoToolkit: an ergonomic analysis tool in a virtual manufacturing environment. International Journal of Computer Integrated Manufacturing, 26(5), 440-452. doi:10.1080/0951192x.2012.731610 es_ES
dc.description.references Andres, J., Gracia, L., & Tornero, J. (2011). Calibration and control of a redundant robotic workcell for milling tasks. International Journal of Computer Integrated Manufacturing, 24(6), 561-573. doi:10.1080/0951192x.2011.566284 es_ES
dc.description.references Arnal, L., Solanes, J. E., Molina, J., & Tornero, J. (2017). Detecting dings and dents on specular car body surfaces based on optical flow. Journal of Manufacturing Systems, 45, 306-321. doi:10.1016/j.jmsy.2017.07.006 es_ES
dc.description.references Blank, S. 2010. “Perfection By Subtraction - The Minimum Feature Set”. Accessed 2018 August. http://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/ es_ES
dc.description.references Dimeas, F., & Aspragathos, N. (2016). Online Stability in Human-Robot Cooperation with Admittance Control. IEEE Transactions on Haptics, 9(2), 267-278. doi:10.1109/toh.2016.2518670 es_ES
dc.description.references Fitzgerald, C. “Developing Baxter, A new industrial robot with common sense for U.S. manufacturing.” 2013. es_ES
dc.description.references Gracia, L., Sala, A., & Garelli, F. (2012). A supervisory loop approach to fulfill workspace constraints in redundant robots. Robotics and Autonomous Systems, 60(1), 1-15. doi:10.1016/j.robot.2011.07.008 es_ES
dc.description.references Gracia, L., Sala, A., & Garelli, F. (2014). Robot coordination using task-priority and sliding-mode techniques. Robotics and Computer-Integrated Manufacturing, 30(1), 74-89. doi:10.1016/j.rcim.2013.08.003 es_ES
dc.description.references Gracia, L., Solanes, J. E., Muñoz-Benavent, P., Valls Miro, J., Perez-Vidal, C., & Tornero, J. (2018). Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback. Mechatronics, 52, 102-118. doi:10.1016/j.mechatronics.2018.04.008 es_ES
dc.description.references Julius, R., Schürenberg, M., Schumacher, F., & Fay, A. (2017). Transformation of GRAFCET to PLC code including hierarchical structures. Control Engineering Practice, 64, 173-194. doi:10.1016/j.conengprac.2017.03.012 es_ES
dc.description.references . E. K. (2016). TOWARDS AN AUTOMATED POLISHING SYSTEM - CAPTURING MANUAL POLISHING OPERATIONS. International Journal of Research in Engineering and Technology, 05(07), 182-192. doi:10.15623/ijret.2016.0507030 es_ES
dc.description.references Khan, A. M., Yun, D., Zuhaib, K. M., Iqbal, J., Yan, R.-J., Khan, F., & Han, C. (2017). Estimation of Desired Motion Intention and compliance control for upper limb assist exoskeleton. International Journal of Control, Automation and Systems, 15(2), 802-814. doi:10.1007/s12555-015-0151-7 es_ES
dc.description.references Kirschner, D., Velik, R., Yahyanejad, S., Brandstötter, M., & Hofbaur, M. (2016). YuMi, Come and Play with Me! A Collaborative Robot for Piecing Together a Tangram Puzzle. Interactive Collaborative Robotics, 243-251. doi:10.1007/978-3-319-43955-6_29 es_ES
dc.description.references Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011 es_ES
dc.description.references Nagata, F., Hase, T., Haga, Z., Omoto, M., & Watanabe, K. (2007). CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics, 17(4-5), 207-216. doi:10.1016/j.mechatronics.2007.01.003 es_ES
dc.description.references Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-Priority Based Redundancy Control of Robot Manipulators. The International Journal of Robotics Research, 6(2), 3-15. doi:10.1177/027836498700600201 es_ES
dc.description.references Ries, E. 2009. “What is the Minimum Viable Product”. March. Accessed 2018 August. http://venturehacks.com/articles/minimum-viable-product es_ES
dc.description.references Robinson, F. 2001 “A Proven Methodology to Maximize Return on Risk”. Accessed 2018 August. http://www.syncdev.com/minimum-viable-product es_ES
dc.description.references Shepherd, S., & Buchstab, A. (2014). KUKA Robots On-Site. Robotic Fabrication in Architecture, Art and Design 2014, 373-380. doi:10.1007/978-3-319-04663-1_26 es_ES
dc.description.references SYMPLEXITY. “Symbiotic Human-Robot Solutions for Complex Surface Finishing Operations.” European project funded by E.U. through the H2020. Project no. 637080. Call: H2020-FoF-2014. Topic: FoF-06-2014. Starting date: 01/ 01/2015.Duration: 48 months. Accessed 2019 March. https://www.symplexity.eu/ es_ES
dc.description.references Vihlborg, P., I. Bryngelsson, B. Lindgren, L. G. Gunnarsson, and P. Graff. 2017. “Associatio between vibration exposure and hand-arm vibration symptoms in a Swedish mechanical industry.” February 2017. es_ES
dc.description.references Vogel, J., Haddadin, S., Jarosiewicz, B., Simeral, J. D., Bacher, D., Hochberg, L. R., … van der Smagt, P. (2015). An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. The International Journal of Robotics Research, 34(6), 763-780. doi:10.1177/0278364914561535 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem