- -

Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Locascio, Antonella Anna Maria es_ES
dc.contributor.author Andrés-Colás, Nuria es_ES
dc.contributor.author Mulet, José Miguel es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.date.accessioned 2020-12-23T04:31:31Z
dc.date.available 2020-12-23T04:31:31Z
dc.date.issued 2019-05-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/157759
dc.description.abstract [EN] Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness (BIO201677776-P and BIO2016-81957-REDT) and the Valencian Government (AICO/2018/300) es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Potassium transport es_ES
dc.subject Sodium transport es_ES
dc.subject Plant ion channels es_ES
dc.subject Yeast es_ES
dc.subject Functional complementation es_ES
dc.subject Protein-protein interaction es_ES
dc.subject Heterologous expression es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms20092133 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-81957-REDT/ES/SISTEMAS DE TRANSPORTE DE SODIO Y POTASIO EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-77776-P/ES/DESCIFRANDO LA REGULACION DE TRANSPORTADORES DE POTASIO EN PLANTAS Y LEVADURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F324/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Locascio, AAM.; Andrés-Colás, N.; Mulet, JM.; Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences. 20(9):1-37. https://doi.org/10.3390/ijms20092133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms20092133 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 37 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 31052176 es_ES
dc.identifier.pmcid PMC6539216 es_ES
dc.relation.pasarela S\412975 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Schroeder, J. I. (2003). Knockout of the guard cell K+out channel and stomatal movements. Proceedings of the National Academy of Sciences, 100(9), 4976-4977. doi:10.1073/pnas.1031801100 es_ES
dc.description.references Hurst, A. C., Meckel, T., Tayefeh, S., Thiel, G., & Homann, U. (2004). Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37(3), 391-397. doi:10.1046/j.1365-313x.2003.01972.x es_ES
dc.description.references BRAG, H. (1972). The Influence of Potassium on the Transpiration Rate and Stomatal Opening in Triticum aestivum andPisum sativum. Physiologia Plantarum, 26(2), 250-257. doi:10.1111/j.1399-3054.1972.tb08553.x es_ES
dc.description.references Mohd Zain, N. A., & Ismail, M. R. (2016). Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management, 164, 83-90. doi:10.1016/j.agwat.2015.09.022 es_ES
dc.description.references Hooymans, J. J. M. (1969). The influence of the transpiration rate on uptake and transport of potassium ions in barley plants. Planta, 88(4), 369-371. doi:10.1007/bf00387465 es_ES
dc.description.references Ohnishi, J., Flügge, U.-I., Heldt, H. W., & Kanai, R. (1990). Involvement of Na+ in Active Uptake of Pyruvate in Mesophyll Chloroplasts of Some C4 Plants. Plant Physiology, 94(3), 950-959. doi:10.1104/pp.94.3.950 es_ES
dc.description.references Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9 es_ES
dc.description.references Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., … Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732 es_ES
dc.description.references Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003 es_ES
dc.description.references Pyo, Y. J., Gierth, M., Schroeder, J. I., & Cho, M. H. (2010). High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions. Plant Physiology, 153(2), 863-875. doi:10.1104/pp.110.154369 es_ES
dc.description.references Maathuis, F. J., & Sanders, D. (1994). Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 91(20), 9272-9276. doi:10.1073/pnas.91.20.9272 es_ES
dc.description.references Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J., & Gaber, R. F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(9), 3736-3740. doi:10.1073/pnas.89.9.3736 es_ES
dc.description.references Gassmann, W., & Schroeder, J. I. (1994). Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control). Plant Physiology, 105(4), 1399-1408. doi:10.1104/pp.105.4.1399 es_ES
dc.description.references Cao, Y., Ward, J. M., Kelly, W. B., Ichida, A. M., Gaber, R. F., Anderson, J. A., … Crawford, N. M. (1995). Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis thaliana. Plant Physiology, 109(3), 1093-1106. doi:10.1104/pp.109.3.1093 es_ES
dc.description.references Müller-Röber, B., Ellenberg, J., Provart, N., Willmitzer, L., Busch, H., Becker, D., … Hedrich, R. (1995). Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. The EMBO Journal, 14(11), 2409-2416. doi:10.1002/j.1460-2075.1995.tb07238.x es_ES
dc.description.references Lebaudy, A., Véry, A.-A., & Sentenac, H. (2007). K+channel activity in plants: Genes, regulations and functions. FEBS Letters, 581(12), 2357-2366. doi:10.1016/j.febslet.2007.03.058 es_ES
dc.description.references Véry, A.-A., Nieves-Cordones, M., Daly, M., Khan, I., Fizames, C., & Sentenac, H. (2014). Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? Journal of Plant Physiology, 171(9), 748-769. doi:10.1016/j.jplph.2014.01.011 es_ES
dc.description.references Schachtman, D., Schroeder, J., Lucas, W., Anderson, J., & Gaber, R. (1992). Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 258(5088), 1654-1658. doi:10.1126/science.8966547 es_ES
dc.description.references Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., … Thibaud, J.-B. (1996). The Baculovirus/Insect Cell System as an Alternative toXenopusOocytes. Journal of Biological Chemistry, 271(37), 22863-22870. doi:10.1074/jbc.271.37.22863 es_ES
dc.description.references Su, H., Balderas, E., Vera-Estrella, R., Golldack, D., Quigley, F., Zhao, C., … Bohnert, H. J. (2003). Plant Molecular Biology, 52(5), 967-980. doi:10.1023/a:1025445612244 es_ES
dc.description.references Paynter, J. J., Andres-Enguix, I., Fowler, P. W., Tottey, S., Cheng, W., Enkvetchakul, D., … Tucker, S. J. (2010). Functional Complementation and Genetic Deletion Studies of KirBac Channels. Journal of Biological Chemistry, 285(52), 40754-40761. doi:10.1074/jbc.m110.175687 es_ES
dc.description.references Bichet, D., Lin, Y.-F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N., & Jan, L. Y. (2004). Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Proceedings of the National Academy of Sciences, 101(13), 4441-4446. doi:10.1073/pnas.0401195101 es_ES
dc.description.references Zaks-Makhina, E., Kim, Y., Aizenman, E., & Levitan, E. S. (2004). Novel Neuroprotective K+ Channel Inhibitor Identified by High-Throughput Screening in Yeast. Molecular Pharmacology, 65(1), 214-219. doi:10.1124/mol.65.1.214 es_ES
dc.description.references Paynter, J. J., Sarkies, P., Andres-Enguix, I., & Tucker, S. J. (2008). Genetic selection of activatory mutations in KcsA. Channels, 2(6), 413-418. doi:10.4161/chan.2.6.6874 es_ES
dc.description.references Yenush, L. (2016). Potassium and Sodium Transport in Yeast. Yeast Membrane Transport, 187-228. doi:10.1007/978-3-319-25304-6_8 es_ES
dc.description.references Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848 es_ES
dc.description.references Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266 es_ES
dc.description.references Durell, S. R., & Guy, H. R. (1999). Structural Models of the KtrB, TrkH, and Trk1,2 Symporters Based on the Structure of the KcsA K+ Channel. Biophysical Journal, 77(2), 789-807. doi:10.1016/s0006-3495(99)76932-8 es_ES
dc.description.references Kuroda, T., Bihler, H., Bashi, E., Slayman, C. L., & Rivetta, A. (2004). Chloride Channel Function in the Yeast TRK-Potassium Transporters. Journal of Membrane Biology, 198(3), 177-192. doi:10.1007/s00232-004-0671-1 es_ES
dc.description.references Zayats, V., Stockner, T., Pandey, S. K., Wörz, K., Ettrich, R., & Ludwig, J. (2015). A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(5), 1183-1195. doi:10.1016/j.bbamem.2015.02.007 es_ES
dc.description.references Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-x es_ES
dc.description.references Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09 es_ES
dc.description.references Ruiz, A., & Ariño, J. (2007). Function and Regulation of the Saccharomyces cerevisiae ENA Sodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07 es_ES
dc.description.references Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l es_ES
dc.description.references Benito, B., Garciadeblás, B., & Rodrı́guez-Navarro, A. (2002). Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi The GenBank accession numbers for the sequences reported in this paper are: Pleurotus ostreatus ENA1, AJ420741; Phycomyces blakesleeanus ENA1, AJ420742; Ph. blakesleeanus PCA1, AJ420743; Blakeslea trispora ENA1, AJ420744; B. trispora BCA1, AJ420745; B. trispora BCA2, AJ420746. Microbiology, 148(4), 933-941. doi:10.1099/00221287-148-4-933 es_ES
dc.description.references Palmgren, M. G., & Nissen, P. (2011). P-Type ATPases. Annual Review of Biophysics, 40(1), 243-266. doi:10.1146/annurev.biophys.093008.131331 es_ES
dc.description.references Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K., & Kanazawa, H. (2004). Four Na+/H+Exchanger Isoforms Are Distributed to Golgi and Post-Golgi Compartments and Are Involved in Organelle pH Regulation. Journal of Biological Chemistry, 280(2), 1561-1572. doi:10.1074/jbc.m410041200 es_ES
dc.description.references Ohgaki, R., Nakamura, N., Mitsui, K., & Kanazawa, H. (2005). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1712(2), 185-196. doi:10.1016/j.bbamem.2005.03.011 es_ES
dc.description.references Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., & Goldstein, S. A. N. (1995). A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature, 376(6542), 690-695. doi:10.1038/376690a0 es_ES
dc.description.references Maresova, L., Urbankova, E., Gaskova, D., & Sychrova, H. (2006). Measurements of plasma membrane potential changes inSaccharomyces cerevisiaecells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Research, 6(7), 1039-1046. doi:10.1111/j.1567-1364.2006.00140.x es_ES
dc.description.references Ahmed, A., Sesti, F., Ilan, N., Shih, T. M., Sturley, S. L., & Goldstein, S. A. . (1999). A Molecular Target for Viral Killer Toxin. Cell, 99(3), 283-291. doi:10.1016/s0092-8674(00)81659-1 es_ES
dc.description.references Cagnac, O., Leterrier, M., Yeager, M., & Blumwald, E. (2007). Identification and Characterization of Vnx1p, a Novel Type of Vacuolar Monovalent Cation/H+Antiporter ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 282(33), 24284-24293. doi:10.1074/jbc.m703116200 es_ES
dc.description.references Petrezselyova, S., Kinclova-Zimmermannova, O., & Sychrova, H. (2013). Vhc1, a novel transporter belonging to the family of electroneutral cation–Cl− cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(2), 623-631. doi:10.1016/j.bbamem.2012.09.019 es_ES
dc.description.references Andre, B., & Scherens, B. (1995). The Yeast YBR235W Gene Encodes a Homolog of the Mammalian Electroneutral Na+-(K+)-Cl− Cotransporter Family. Biochemical and Biophysical Research Communications, 217(1), 150-153. doi:10.1006/bbrc.1995.2757 es_ES
dc.description.references Nass, R., & Rao, R. (1998). Novel Localization of a Na+/H+Exchanger in a Late Endosomal Compartment of Yeast. Journal of Biological Chemistry, 273(33), 21054-21060. doi:10.1074/jbc.273.33.21054 es_ES
dc.description.references Long, S. B. (2005). Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel. Science, 309(5736), 897-903. doi:10.1126/science.1116269 es_ES
dc.description.references Pilot, G., Lacombe, B., Gaymard, F., Chérel, I., Boucherez, J., Thibaud, J.-B., & Sentenac, H. (2000). Guard Cell Inward K+Channel Activity inArabidopsisInvolves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 276(5), 3215-3221. doi:10.1074/jbc.m007303200 es_ES
dc.description.references Saito, S., Hoshi, N., Zulkifli, L., Widyastuti, S., Goshima, S., Dreyer, I., & Uozumi, N. (2017). Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels, 11(6), 510-516. doi:10.1080/19336950.2017.1372066 es_ES
dc.description.references Nakamura, R. L., Anderson, J. A., & Gaber, R. F. (1997). Determination of Key Structural Requirements of a K+Channel Pore. Journal of Biological Chemistry, 272(2), 1011-1018. doi:10.1074/jbc.272.2.1011 es_ES
dc.description.references Nakamura, R. L., & Gaber, R. F. (2009). Ion selectivity of the Kat1 K+channel pore. Molecular Membrane Biology, 26(5-7), 293-308. doi:10.1080/09687680903188332 es_ES
dc.description.references Kochian, L. V., Garvin, D. F., Shaff, J. E., Chilcott, T. C., & Lucas, W. J. (1993). Towards an understanding of the molecular basis of plants K+ transport: Characterization of cloned K+ transport cDNAs. Plant and Soil, 155-156(1), 115-118. doi:10.1007/bf00024997 es_ES
dc.description.references Lai, H. C., Grabe, M., Jan, Y. N., & Jan, L. Y. (2005). The S4 Voltage Sensor Packs Against the Pore Domain in the KAT1 Voltage-Gated Potassium Channel. Neuron, 47(3), 395-406. doi:10.1016/j.neuron.2005.06.019 es_ES
dc.description.references Su, Y.-H., North, H., Grignon, C., Thibaud, J.-B., Sentenac, H., & Véry, A.-A. (2005). Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. The Plant Cell, 17(5), 1532-1548. doi:10.1105/tpc.104.030551 es_ES
dc.description.references Obata, T., Kitamoto, H. K., Nakamura, A., Fukuda, A., & Tanaka, Y. (2007). Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells. Plant Physiology, 144(4), 1978-1985. doi:10.1104/pp.107.101154 es_ES
dc.description.references Hirsch, R. E. (1998). A Role for the AKT1 Potassium Channel in Plant Nutrition. Science, 280(5365), 918-921. doi:10.1126/science.280.5365.918 es_ES
dc.description.references Ahn, S. J., Shin, R., & Schachtman, D. P. (2004). Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake. Plant Physiology, 134(3), 1135-1145. doi:10.1104/pp.103.034660 es_ES
dc.description.references Gierth, M., Mäser, P., & Schroeder, J. I. (2005). The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiology, 137(3), 1105-1114. doi:10.1104/pp.104.057216 es_ES
dc.description.references Ros, R., Lemaillet, G., Fonrouge, A. G., Daram, P., Enjuto, M., Salmon, J. M., … Sentenac, H. (1999). Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiologia Plantarum, 105(3), 459-468. doi:10.1034/j.1399-3054.1999.105310.x es_ES
dc.description.references Hartje, S., Zimmermann, S., Klonus, D., & Mueller-Roeber, B. (2000). Functional characterisation of LKT1, a K + uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K + channel SKT1 after expression in Xenopus oocytes. Planta, 210(5), 723-731. doi:10.1007/s004250050673 es_ES
dc.description.references BOSCARI, A., CLÉMENT, M., VOLKOV, V., GOLLDACK, D., HYBIAK, J., MILLER, A. J., … FRICKE, W. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment, 32(12), 1761-1777. doi:10.1111/j.1365-3040.2009.02033.x es_ES
dc.description.references Schleyer, M., & Bakker, E. P. (1993). Nucleotide sequence and 3’-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. Journal of Bacteriology, 175(21), 6925-6931. doi:10.1128/jb.175.21.6925-6931.1993 es_ES
dc.description.references Bañuelos, M. A., Klein, R. D., Alexander-Bowman, S. J., & Rodríguez-Navarro, A. (1995). A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. The EMBO Journal, 14(13), 3021-3027. doi:10.1002/j.1460-2075.1995.tb07304.x es_ES
dc.description.references Santa-María, G. E., Rubio, F., Dubcovsky, J., & Rodríguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell, 9(12), 2281-2289. doi:10.1105/tpc.9.12.2281 es_ES
dc.description.references Nieves-Cordones, M., Alemán, F., Martínez, V., & Rubio, F. (2010). The Arabidopsis thaliana HAK5 K+ Transporter Is Required for Plant Growth and K+ Acquisition from Low K+ Solutions under Saline Conditions. Molecular Plant, 3(2), 326-333. doi:10.1093/mp/ssp102 es_ES
dc.description.references Rubio, F., Santa-María, G. E., & Rodríguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 109(1), 34-43. doi:10.1034/j.1399-3054.2000.100106.x es_ES
dc.description.references Rubio, F., Gassmann, W., & Schroeder, J. I. (1995). Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 270(5242), 1660-1663. doi:10.1126/science.270.5242.1660 es_ES
dc.description.references Gassmann, W., Rubio, F., & Schroeder, J. I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal, 10(5), 869-882. doi:10.1046/j.1365-313x.1996.10050869.x es_ES
dc.description.references Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., … Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae. Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249 es_ES
dc.description.references Rubio, F., Schwarz, M., Gassmann, W., & Schroeder, J. I. (1999). Genetic Selection of Mutations in the High Affinity K+Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+Permeability and Increased Na+Tolerance. Journal of Biological Chemistry, 274(11), 6839-6847. doi:10.1074/jbc.274.11.6839 es_ES
dc.description.references Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., … Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.x es_ES
dc.description.references Fairbairn, D. J., Liu, W., Schachtman, D. P., Gomez-Gallego, S., Day, S. R., & Teasdale, R. D. (2000). Plant Molecular Biology, 43(4), 515-525. doi:10.1023/a:1006496402463 es_ES
dc.description.references Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal, 27(2), 129-138. doi:10.1046/j.1365-313x.2001.01077.x es_ES
dc.description.references Wang, T.-B., Gassmann, W., Rubio, F., Schroeder, J. I., & Glass, A. D. M. (1998). Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium. Plant Physiology, 118(2), 651-659. doi:10.1104/pp.118.2.651 es_ES
dc.description.references Safiarian, M. J., Pertl-Obermeyer, H., Lughofer, P., Hude, R., Bertl, A., & Obermeyer, G. (2015). Lost in traffic? The K+ channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00047 es_ES
dc.description.references Mouline, K. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes & Development, 16(3), 339-350. doi:10.1101/gad.213902 es_ES
dc.description.references Bihler, H., Eing, C., Hebeisen, S., Roller, A., Czempinski, K., & Bertl, A. (2005). TPK1 Is a Vacuolar Ion Channel Different from the Slow-Vacuolar Cation Channel. Plant Physiology, 139(1), 417-424. doi:10.1104/pp.105.065599 es_ES
dc.description.references Hamamoto, S., Marui, J., Matsuoka, K., Higashi, K., Igarashi, K., Nakagawa, T., … Uozumi, N. (2007). Characterization of a Tobacco TPK-type K+Channel as a Novel Tonoplast K+Channel Using Yeast Tonoplasts. Journal of Biological Chemistry, 283(4), 1911-1920. doi:10.1074/jbc.m708213200 es_ES
dc.description.references Goldstein, S. A. N., Bockenhauer, D., O’Kelly, I., & Zilberberg, N. (2001). Potassium leak channels and the KCNK family of two-p-domain subunits. Nature Reviews Neuroscience, 2(3), 175-184. doi:10.1038/35058574 es_ES
dc.description.references Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., … Hedrich, R. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences, 101(44), 15621-15626. doi:10.1073/pnas.0401502101 es_ES
dc.description.references Apse, M. P. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256 es_ES
dc.description.references Gaxiola, R. A., Rao, R., Sherman, A., Grisafi, P., Alper, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96(4), 1480-1485. doi:10.1073/pnas.96.4.1480 es_ES
dc.description.references Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction. The Plant Cell, 23(9), 3482-3497. doi:10.1105/tpc.111.089581 es_ES
dc.description.references Plugge, B. (2000). A Potassium Channel Protein Encoded by Chlorella Virus PBCV-1. Science, 287(5458), 1641-1644. doi:10.1126/science.287.5458.1641 es_ES
dc.description.references Xu, K., Zhang, H., Blumwald, E., & Xia, T. (2010). A Novel Plant Vacuolar Na+/H+Antiporter Gene Evolved by DNA Shuffling Confers Improved Salt Tolerance in Yeast. Journal of Biological Chemistry, 285(30), 22999-23006. doi:10.1074/jbc.m109.073783 es_ES
dc.description.references Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E., & Boeke, J. D. (1996). Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proceedings of the National Academy of Sciences, 93(19), 10315-10320. doi:10.1073/pnas.93.19.10315 es_ES
dc.description.references Leanna, C. (1996). The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Research, 24(17), 3341-3347. doi:10.1093/nar/24.17.3341 es_ES
dc.description.references Serebriiskii, I., Khazak, V., & Golemis, E. A. (1999). A Two-hybrid Dual Bait System to Discriminate Specificity of Protein Interactions. Journal of Biological Chemistry, 274(24), 17080-17087. doi:10.1074/jbc.274.24.17080 es_ES
dc.description.references Hirst, M., Ho, C., Sabourin, L., Rudnicki, M., Penn, L., & Sadowski, I. (2001). A two-hybrid system for transactivator bait proteins. Proceedings of the National Academy of Sciences, 98(15), 8726-8731. doi:10.1073/pnas.141413598 es_ES
dc.description.references Petrascheck, M., Castagna, F., & Barberis, A. (2001). Two-Hybrid Selection Assay to Identify Proteins Interacting with Polymerase II Transcription Factors and Regulators. BioTechniques, 30(2), 296-302. doi:10.2144/01302st02 es_ES
dc.description.references Johnsson, N., & Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences, 91(22), 10340-10344. doi:10.1073/pnas.91.22.10340 es_ES
dc.description.references Stagljar, I., Korostensky, C., Johnsson, N., & te Heesen, S. (1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences, 95(9), 5187-5192. doi:10.1073/pnas.95.9.5187 es_ES
dc.description.references Hubsman, M. (2001). A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Research, 29(4), 18e-18. doi:10.1093/nar/29.4.e18 es_ES
dc.description.references Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., & Karin, M. (1997). Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Molecular and Cellular Biology, 17(6), 3094-3102. doi:10.1128/mcb.17.6.3094 es_ES
dc.description.references Broder, Y. C., Katz, S., & Aronheim, A. (1998). The Ras recruitment system, a novel approach to the study of protein–protein interactions. Current Biology, 8(20), 1121-1130. doi:10.1016/s0960-9822(98)70467-1 es_ES
dc.description.references Möckli, N., Deplazes, A., Hassa, P. O., Zhang, Z., Peter, M., Hottiger, M. O., … Auerbach, D. (2007). Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques, 42(6), 725-730. doi:10.2144/000112455 es_ES
dc.description.references Boder, E. T., & Wittrup, K. D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 15(6), 553-557. doi:10.1038/nbt0697-553 es_ES
dc.description.references Urech, D. M., Lichtlen, P., & Barberis, A. (2003). Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochimica et Biophysica Acta (BBA) - General Subjects, 1622(2), 117-127. doi:10.1016/s0304-4165(03)00133-8 es_ES
dc.description.references Dube, D. H., Li, B., Greenblatt, E. J., Nimer, S., Raymond, A. K., & Kohler, J. J. (2010). A Two-Hybrid Assay to Study Protein Interactions within the Secretory Pathway. PLoS ONE, 5(12), e15648. doi:10.1371/journal.pone.0015648 es_ES
dc.description.references Pelletier, J. N., Campbell-Valois, F.-X., & Michnick, S. W. (1998). Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proceedings of the National Academy of Sciences, 95(21), 12141-12146. doi:10.1073/pnas.95.21.12141 es_ES
dc.description.references Ozawa, T., Kaihara, A., Sato, M., Tachihara, K., & Umezawa, Y. (2001). Split Luciferase as an Optical Probe for Detecting Protein−Protein Interactions in Mammalian Cells Based on Protein Splicing. Analytical Chemistry, 73(11), 2516-2521. doi:10.1021/ac0013296 es_ES
dc.description.references TAFELMEYER, P. (2004). Transforming a ($beta;/$alpha;)8-Barrel Enzyme into a Split-Protein Sensor through Directed Evolution. Chemistry & Biology, 11(5), 681-689. doi:10.1016/s1074-5521(04)00112-7 es_ES
dc.description.references Hu, C.-D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of Interactions among bZIP and Rel Family Proteins in Living Cells Using Bimolecular Fluorescence Complementation. Molecular Cell, 9(4), 789-798. doi:10.1016/s1097-2765(02)00496-3 es_ES
dc.description.references Magliery, T. J., Wilson, C. G. M., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., & Regan, L. (2005). Detecting Protein−Protein Interactions with a Green Fluorescent Protein Fragment Reassembly Trap:  Scope and Mechanism. Journal of the American Chemical Society, 127(1), 146-157. doi:10.1021/ja046699g es_ES
dc.description.references Xing, S., Wallmeroth, N., Berendzen, K. W., & Grefen, C. (2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, pp.00470.2016. doi:10.1104/pp.16.00470 es_ES
dc.description.references Moosavi, B., Mousavi, B., Yang, W.-C., & Yang, G.-F. (2017). Yeast-based assays for detecting protein-protein/drug interactions and their inhibitors. European Journal of Cell Biology, 96(6), 529-541. doi:10.1016/j.ejcb.2017.06.003 es_ES
dc.description.references Stynen, B., Tournu, H., Tavernier, J., & Van Dijck, P. (2012). Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System. Microbiology and Molecular Biology Reviews, 76(2), 331-382. doi:10.1128/mmbr.05021-11 es_ES
dc.description.references Brückner, A., Polge, C., Lentze, N., Auerbach, D., & Schlattner, U. (2009). Yeast Two-Hybrid, a Powerful Tool for Systems Biology. International Journal of Molecular Sciences, 10(6), 2763-2788. doi:10.3390/ijms10062763 es_ES
dc.description.references Gunde, T., Tanner, S., Maur, A. A. der, Petrascheck, M., & Barberis, A. (2004). Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein-protein interactions in vivo. BioTechniques, 37(5), 844-852. doi:10.2144/04375pt03 es_ES
dc.description.references Obrdlik, P., El-Bakkoury, M., Hamacher, T., Cappellaro, C., Vilarino, C., Fleischer, C., … Frommer, W. B. (2004). K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences, 101(33), 12242-12247. doi:10.1073/pnas.0404467101 es_ES
dc.description.references Raquet, X., Eckert, J. H., Müller, S., & Johnsson, N. (2001). Detection of altered protein conformations in living cells. Journal of Molecular Biology, 305(4), 927-938. doi:10.1006/jmbi.2000.4239 es_ES
dc.description.references Kojima, T., Karasawa, S., Miyawaki, A., Tsumuraya, T., & Fujii, I. (2011). Novel screening system for protein–protein interactions by bimolecular fluorescence complementation in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 111(4), 397-401. doi:10.1016/j.jbiosc.2010.12.013 es_ES
dc.description.references Chérel, I., & Gaillard, I. (2019). The Complex Fine-Tuning of K+ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. International Journal of Molecular Sciences, 20(3), 715. doi:10.3390/ijms20030715 es_ES
dc.description.references Bregante, M., Yang, Y., Formentin, E., Carpaneto, A., Schroeder, J. I., Gambale, F., … Costa, A. (2007). KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Molecular Biology, 66(1-2), 61-72. doi:10.1007/s11103-007-9252-x es_ES
dc.description.references Sklodowski, K., Riedelsberger, J., Raddatz, N., Riadi, G., Caballero, J., Chérel, I., … Dreyer, I. (2017). The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Scientific Reports, 7(1). doi:10.1038/srep44611 es_ES
dc.description.references Zhang, A., Ren, H.-M., Tan, Y.-Q., Qi, G.-N., Yao, F.-Y., Wu, G.-L., … Wang, Y.-F. (2016). S-Type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. The Plant Cell, 28(4), 949-965. doi:10.1105/tpc.15.01050 es_ES
dc.description.references Rosas-Santiago, P., Lagunas-Gómez, D., Barkla, B. J., Vera-Estrella, R., Lalonde, S., Jones, A., … Pantoja, O. (2015). Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany, 66(9), 2733-2748. doi:10.1093/jxb/erv069 es_ES
dc.description.references Zhang, B., Karnik, R., Wang, Y., Wallmeroth, N., Blatt, M. R., & Grefen, C. (2015). The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. The Plant Cell, 27(6), 1697-1717. doi:10.1105/tpc.15.00305 es_ES
dc.description.references Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Paneque, M., … Blatt, M. R. (2009). A Tripartite SNARE-K+ Channel Complex Mediates in Channel-Dependent K+ Nutrition in Arabidopsis. The Plant Cell, 21(9), 2859-2877. doi:10.1105/tpc.109.066118 es_ES
dc.description.references Ren, X.-L., Qi, G.-N., Feng, H.-Q., Zhao, S., Zhao, S.-S., Wang, Y., & Wu, W.-H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis. The Plant Journal, 74(2), 258-266. doi:10.1111/tpj.12123 es_ES
dc.description.references Li, L., Kim, B.-G., Cheong, Y. H., Pandey, G. K., & Luan, S. (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences, 103(33), 12625-12630. doi:10.1073/pnas.0605129103 es_ES
dc.description.references Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. doi:10.1016/j.cell.2006.06.011 es_ES
dc.description.references Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers, M., … Hedrich, R. (2009). HeteromericAtKC1·AKT1 Channels inArabidopsisRoots Facilitate Growth under K+-limiting Conditions. Journal of Biological Chemistry, 284(32), 21288-21295. doi:10.1074/jbc.m109.017574 es_ES
dc.description.references Ardie, S. W., Nishiuchi, S., Liu, S., & Takano, T. (2010). Ectopic Expression of the K+ Channel β Subunits from Puccinellia tenuiflora (KPutB1) and Rice (KOB1) Alters K+ Homeostasis of Yeast and Arabidopsis. Molecular Biotechnology, 48(1), 76-86. doi:10.1007/s12033-010-9349-3 es_ES
dc.description.references Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgé-Faillie, C., … Kudla, J. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 21(7), 1116-1130. doi:10.1038/cr.2011.50 es_ES
dc.description.references Chérel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., & Thibaud, J.-B. (2002). Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA. The Plant Cell, 14(5), 1133-1146. doi:10.1105/tpc.000943 es_ES
dc.description.references Vranová, E., Tähtiharju, S., Sriprang, R., Willekens, H., Heino, P., Tapio Palva, E., … Van Camp, W. (2001). The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. Journal of Experimental Botany, 52(354), 181-182. doi:10.1093/jexbot/52.354.181 es_ES
dc.description.references Lefoulon, C., Boeglin, M., Moreau, B., Véry, A.-A., Szponarski, W., Dauzat, M., … Chérel, I. (2016). TheArabidopsisAtPP2CA Protein Phosphatase Inhibits the GORK K+Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations. Journal of Biological Chemistry, 291(12), 6521-6533. doi:10.1074/jbc.m115.711309 es_ES
dc.description.references Dreyer, I., Porée, F., Schneider, A., Mittelstädt, J., Bertl, A., Sentenac, H., … Mueller-Roeber, B. (2004). Assembly of Plant Shaker-Like Kout Channels Requires Two Distinct Sites of the Channel α-Subunit. Biophysical Journal, 87(2), 858-872. doi:10.1529/biophysj.103.037671 es_ES
dc.description.references Liu, L., Zheng, C., Kuang, B., Wei, L., Yan, L., & Wang, T. (2016). Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice. PLOS Genetics, 12(7), e1006085. doi:10.1371/journal.pgen.1006085 es_ES
dc.description.references Naso, A., Dreyer, I., Pedemonte, L., Testa, I., Gomez-Porras, J. L., Usai, C., … Picco, C. (2009). The Role of the C-Terminus for Functional Heteromerization of the Plant Channel KDC1. Biophysical Journal, 96(10), 4063-4074. doi:10.1016/j.bpj.2009.02.055 es_ES
dc.description.references Boneh, U., Biton, I., Schwartz, A., & Ben-Ari, G. (2012). Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 187, 89-96. doi:10.1016/j.plantsci.2012.01.015 es_ES
dc.description.references Hwang, H., Yoon, J., Kim, H. Y., Min, M. K., Kim, J.-A., Choi, E.-H., … Kim, B.-G. (2013). Unique Features of Two Potassium Channels, OsKAT2 and OsKAT3, Expressed in Rice Guard Cells. PLoS ONE, 8(8), e72541. doi:10.1371/journal.pone.0072541 es_ES
dc.description.references Ehrhardt, T., Zimmermann, S., & Müller-Röber, B. (1997). Association of plant K+inchannels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Letters, 409(2), 166-170. doi:10.1016/s0014-5793(97)00502-4 es_ES
dc.description.references Daras, G., Rigas, S., Tsitsekian, D., Iacovides, T. A., & Hatzopoulos, P. (2015). Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway. Plant Science, 231, 131-137. doi:10.1016/j.plantsci.2014.11.017 es_ES
dc.description.references Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221 es_ES
dc.description.references Acharya, B. R., Jeon, B. W., Zhang, W., & Assmann, S. M. (2013). Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytologist, 200(4), 1049-1063. doi:10.1111/nph.12469 es_ES
dc.description.references Honsbein, A., Blatt, M. R., & Grefen, C. (2010). A molecular framework for coupling cellular volume and osmotic solute transport control. Journal of Experimental Botany, 62(7), 2363-2370. doi:10.1093/jxb/erq386 es_ES
dc.description.references Sokolovski, S., Hills, A., Gay, R. A., & Blatt, M. R. (2008). Functional Interaction of the SNARE Protein NtSyp121 in Ca2+ Channel Gating, Ca2+ Transients and ABA Signalling of Stomatal Guard Cells. Molecular Plant, 1(2), 347-358. doi:10.1093/mp/ssm029 es_ES
dc.description.references Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. The Plant Cell, 10(7), 1181-1191. doi:10.1105/tpc.10.7.1181 es_ES
dc.description.references Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. The Plant Cell, 14(2), 465-477. doi:10.1105/tpc.010371 es_ES
dc.description.references Guo, Y. (2001). Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance. THE PLANT CELL ONLINE, 13(6), 1383-1400. doi:10.1105/tpc.13.6.1383 es_ES
dc.description.references Liu, J. (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 280(5371), 1943-1945. doi:10.1126/science.280.5371.1943 es_ES
dc.description.references Shi, H., Xiong, L., Stevenson, B., Lu, T., & Zhu, J.-K. (2002). The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. The Plant Cell, 14(3), 575-588. doi:10.1105/tpc.010417 es_ES
dc.description.references Shi, H., & Zhu, J.-K. (2002). SOS4, A Pyridoxal Kinase Gene, Is Required for Root Hair Development in Arabidopsis. Plant Physiology, 129(2), 585-593. doi:10.1104/pp.001982 es_ES
dc.description.references Rueschhoff, E. E., Gillikin, J. W., Sederoff, H. W., & Daub, M. E. (2013). The SOS4 pyridoxal kinase is required for maintenance of vitamin B6-mediated processes in chloroplasts. Plant Physiology and Biochemistry, 63, 281-291. doi:10.1016/j.plaphy.2012.12.003 es_ES
dc.description.references Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. doi:10.1073/pnas.132092099 es_ES
dc.description.references Gong, D., Guo, Y., Schumaker, K. S., & Zhu, J.-K. (2004). The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis. Plant Physiology, 134(3), 919-926. doi:10.1104/pp.103.037440 es_ES
dc.description.references Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291 es_ES
dc.description.references Du, W., Lin, H., Chen, S., Wu, Y., Zhang, J., Fuglsang, A. T., … Guo, Y. (2011). Phosphorylation of SOS3-Like Calcium-Binding Proteins by Their Interacting SOS2-Like Protein Kinases Is a Common Regulatory Mechanism in Arabidopsis. Plant Physiology, 156(4), 2235-2243. doi:10.1104/pp.111.173377 es_ES
dc.description.references Lin, H., Yang, Y., Quan, R., Mendoza, I., Wu, Y., Du, W., … Guo, Y. (2009). Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 Protein Kinase Stabilizes Their Protein Complex and Regulates Salt Tolerance in Arabidopsis. The Plant Cell, 21(5), 1607-1619. doi:10.1105/tpc.109.066217 es_ES
dc.description.references Qiu, Q.-S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J.-K. (2003). Regulation of Vacuolar Na+/H+Exchange inArabidopsis thalianaby the Salt-Overly-Sensitive (SOS) Pathway. Journal of Biological Chemistry, 279(1), 207-215. doi:10.1074/jbc.m307982200 es_ES
dc.description.references Tang, R.-J., Liu, H., Bao, Y., Lv, Q.-D., Yang, L., & Zhang, H.-X. (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology, 74(4-5), 367-380. doi:10.1007/s11103-010-9680-x es_ES
dc.description.references Zhou, Y., Yin, X., Duan, R., Hao, G., Guo, J., & Jiang, X. (2015). SpAHA1 and SpSOS1 Coordinate in Transgenic Yeast to Improve Salt Tolerance. PLOS ONE, 10(9), e0137447. doi:10.1371/journal.pone.0137447 es_ES
dc.description.references HUERTAS, R., OLÍAS, R., ELJAKAOUI, Z., GÁLVEZ, F. J., LI, J., DE MORALES, P. A., … RODRÍGUEZ-ROSALES, M. P. (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, Cell & Environment, 35(8), 1467-1482. doi:10.1111/j.1365-3040.2012.02504.x es_ES
dc.description.references Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J. M., & Cui, D. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 473(1), 8-15. doi:10.1016/j.abb.2008.02.018 es_ES
dc.description.references Feki, K., Quintero, F. J., Pardo, J. M., & Masmoudi, K. (2011). Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology, 76(6), 545-556. doi:10.1007/s11103-011-9787-8 es_ES
dc.description.references Serrano, R., Kielland-Brandt, M. C., & Fink, G. R. (1986). Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature, 319(6055), 689-693. doi:10.1038/319689a0 es_ES
dc.description.references Harper, J. F., Surowy, T. K., & Sussman, M. R. (1989). Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 86(4), 1234-1238. doi:10.1073/pnas.86.4.1234 es_ES
dc.description.references Palmgren, M. G., & Christensen, G. (1993). Complementation in situ of the yeast plasma membrane H+ -ATPase gene pmal by an H+ -ATPase gene from a heterologous species. FEBS Letters, 317(3), 216-222. doi:10.1016/0014-5793(93)81279-9 es_ES
dc.description.references Baunsgaard, L., Venema, K., Axelsen, K. B., Villalba, J. M., Welling, A., Wollenweber, B., & Palmgren, M. G. (1996). Modified plant plasma membrane H+-ATPase with improved transport coupling efficiency identified by mutant selection in yeast. The Plant Journal, 10(3), 451-458. doi:10.1046/j.1365-313x.1996.10030451.x es_ES
dc.description.references Santiago, J., Dupeux, F., Betz, K., Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., … Rodriguez, P. L. (2012). Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science, 182, 3-11. doi:10.1016/j.plantsci.2010.11.014 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162 es_ES
dc.description.references Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973 es_ES
dc.description.references Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178 es_ES
dc.description.references Okamoto, M., & Cutler, S. R. (2018). Chemical Control of ABA Receptors to Enable Plant Protection Against Water Stress. Plant Chemical Genomics, 127-141. doi:10.1007/978-1-4939-7874-8_11 es_ES
dc.description.references Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., & Zhang, W. (2015). The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell & Environment, 38(12), 2766-2779. doi:10.1111/pce.12586 es_ES
dc.description.references Gaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.x es_ES
dc.description.references Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920 es_ES
dc.description.references Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328 es_ES
dc.description.references Mendizabal, I., Rios, G., Mulet, J. M., Serrano, R., & de Larrinoa, I. F. (1998). Yeast putative transcription factors involved in salt tolerance. FEBS Letters, 425(2), 323-328. doi:10.1016/s0014-5793(98)00249-x es_ES
dc.description.references Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013 es_ES
dc.description.references BORDAS, M., MONTESINOS, C., DABAUZA, M., SALVADOR, A., ROIG, L. A., SERRANO, R., & MORENO, V. (1997). Transgenic Research, 6(1), 41-50. doi:10.1023/a:1018453032336 es_ES
dc.description.references Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato. Plant Physiology, 123(1), 393-402. doi:10.1104/pp.123.1.393 es_ES
dc.description.references Forment, J., Naranjo, M. A., Roldan, M., Serrano, R., & Vicente, O. (2002). Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 30(5), 511-519. doi:10.1046/j.1365-313x.2002.01311.x es_ES
dc.description.references Liu, N., Chen, A.-P., Zhong, N.-Q., Wang, F., Wang, H.-Y., & Xia, G.-X. (2007). Functional screening of salt stress-related genes from Thellungiella halophila using fission yeast system. Physiologia Plantarum, 129(4), 671-678. doi:10.1111/j.1399-3054.2007.00857.x es_ES
dc.description.references NARANJO, M. A., FORMENT, J., ROLDAN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 29(10), 1890-1900. doi:10.1111/j.1365-3040.2006.01565.x es_ES
dc.description.references Elledge, S. J., Mulligan, J. T., Ramer, S. W., Spottswood, M., & Davis, R. W. (1991). Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proceedings of the National Academy of Sciences, 88(5), 1731-1735. doi:10.1073/pnas.88.5.1731 es_ES
dc.description.references Lippuner, V., Cyert, M. S., & Gasser, C. S. (1996). Two Classes of Plant cDNA Clones Differentially Complement Yeast Calcineurin Mutants and Increase Salt Tolerance of Wild-type Yeast. Journal of Biological Chemistry, 271(22), 12859-12866. doi:10.1074/jbc.271.22.12859 es_ES
dc.description.references Li, J., Sun, X., Yu, G., Jia, C., Liu, J., & Pan, H. (2014). Generation and Analysis of Expressed Sequence Tags (ESTs) from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes. International Journal of Molecular Sciences, 15(6), 11172-11189. doi:10.3390/ijms150611172 es_ES
dc.description.references Kanhonou, R., Serrano, R., & Ros Palau, R. (2001). Plant Molecular Biology, 47(5), 571-579. doi:10.1023/a:1012227913356 es_ES
dc.description.references Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.x es_ES
dc.description.references Serrano, R., Montesinos, C., Gaxiola, R., Ríos, G., Forment, J., Leube, M., … Ros, R. (2003). FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, (609), 31-38. doi:10.17660/actahortic.2003.609.2 es_ES
dc.description.references Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076 es_ES
dc.description.references Porcel, R., Bustamante, A., Ros, R., Serrano, R., & Mulet Salort, J. M. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844-2857. doi:10.1111/pce.13416 es_ES
dc.description.references Kumar, R., Mustafiz, A., Sahoo, K. K., Sharma, V., Samanta, S., Sopory, S. K., … Singla-Pareek, S. L. (2012). Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Molecular Biology, 79(6), 555-568. doi:10.1007/s11103-012-9928-8 es_ES
dc.description.references Chen, Y., Chen, C., Tan, Z., Liu, J., Zhuang, L., Yang, Z., & Huang, B. (2016). Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00102 es_ES
dc.description.references Patankar, H. V., Al-Harrasi, I., Al-Yahyai, R., & Yaish, M. W. (2018). Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA and Cell Biology, 37(6), 524-534. doi:10.1089/dna.2018.4159 es_ES
dc.description.references Opekarová, M., & Tanner, W. (2003). Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1610(1), 11-22. doi:10.1016/s0005-2736(02)00708-3 es_ES
dc.description.references Farrokhi, N., Hrmova, M., Burton, R. A., & Fincher, G. B. (2009). Heterologous and Cell-Free Protein Expression Systems. Methods in Molecular Biology™, 175-198. doi:10.1007/978-1-59745-427-8_10 es_ES
dc.description.references Veitia, R. A., Caburet, S., & Birchler, J. A. (2017). Mechanisms of Mendelian dominance. Clinical Genetics, 93(3), 419-428. doi:10.1111/cge.13107 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem