- -

Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters

Mostrar el registro completo del ítem

Locascio, AAM.; Andrés-Colás, N.; Mulet, JM.; Yenush, L. (2019). Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. International Journal of Molecular Sciences. 20(9):1-37. https://doi.org/10.3390/ijms20092133

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157759

Ficheros en el ítem

Metadatos del ítem

Título: Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters
Autor: Locascio, Antonella Anna Maria Andrés-Colás, Nuria Mulet, José Miguel Yenush, Lynne
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under ...[+]
Palabras clave: Potassium transport , Sodium transport , Plant ion channels , Yeast , Functional complementation , Protein-protein interaction , Heterologous expression
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms20092133
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms20092133
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2016-81957-REDT/ES/SISTEMAS DE TRANSPORTE DE SODIO Y POTASIO EN PLANTAS/
info:eu-repo/grantAgreement/MINECO//BIO2016-77776-P/ES/DESCIFRANDO LA REGULACION DE TRANSPORTADORES DE POTASIO EN PLANTAS Y LEVADURAS/
info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F324/
Agradecimientos:
This work was supported by the Spanish Ministry of Economy and Competitiveness (BIO201677776-P and BIO2016-81957-REDT) and the Valencian Government (AICO/2018/300)
Tipo: Artículo

References

Schroeder, J. I. (2003). Knockout of the guard cell K+out channel and stomatal movements. Proceedings of the National Academy of Sciences, 100(9), 4976-4977. doi:10.1073/pnas.1031801100

Hurst, A. C., Meckel, T., Tayefeh, S., Thiel, G., & Homann, U. (2004). Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37(3), 391-397. doi:10.1046/j.1365-313x.2003.01972.x

BRAG, H. (1972). The Influence of Potassium on the Transpiration Rate and Stomatal Opening in Triticum aestivum andPisum sativum. Physiologia Plantarum, 26(2), 250-257. doi:10.1111/j.1399-3054.1972.tb08553.x [+]
Schroeder, J. I. (2003). Knockout of the guard cell K+out channel and stomatal movements. Proceedings of the National Academy of Sciences, 100(9), 4976-4977. doi:10.1073/pnas.1031801100

Hurst, A. C., Meckel, T., Tayefeh, S., Thiel, G., & Homann, U. (2004). Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. The Plant Journal, 37(3), 391-397. doi:10.1046/j.1365-313x.2003.01972.x

BRAG, H. (1972). The Influence of Potassium on the Transpiration Rate and Stomatal Opening in Triticum aestivum andPisum sativum. Physiologia Plantarum, 26(2), 250-257. doi:10.1111/j.1399-3054.1972.tb08553.x

Mohd Zain, N. A., & Ismail, M. R. (2016). Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management, 164, 83-90. doi:10.1016/j.agwat.2015.09.022

Hooymans, J. J. M. (1969). The influence of the transpiration rate on uptake and transport of potassium ions in barley plants. Planta, 88(4), 369-371. doi:10.1007/bf00387465

Ohnishi, J., Flügge, U.-I., Heldt, H. W., & Kanai, R. (1990). Involvement of Na+ in Active Uptake of Pyruvate in Mesophyll Chloroplasts of Some C4 Plants. Plant Physiology, 94(3), 950-959. doi:10.1104/pp.94.3.950

Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9

Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., … Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732

Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003

Pyo, Y. J., Gierth, M., Schroeder, J. I., & Cho, M. H. (2010). High-Affinity K+ Transport in Arabidopsis: AtHAK5 and AKT1 Are Vital for Seedling Establishment and Postgermination Growth under Low-Potassium Conditions. Plant Physiology, 153(2), 863-875. doi:10.1104/pp.110.154369

Maathuis, F. J., & Sanders, D. (1994). Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 91(20), 9272-9276. doi:10.1073/pnas.91.20.9272

Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J., & Gaber, R. F. (1992). Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(9), 3736-3740. doi:10.1073/pnas.89.9.3736

Gassmann, W., & Schroeder, J. I. (1994). Inward-Rectifying K+ Channels in Root Hairs of Wheat (A Mechanism for Aluminum-Sensitive Low-Affinity K+ Uptake and Membrane Potential Control). Plant Physiology, 105(4), 1399-1408. doi:10.1104/pp.105.4.1399

Cao, Y., Ward, J. M., Kelly, W. B., Ichida, A. M., Gaber, R. F., Anderson, J. A., … Crawford, N. M. (1995). Multiple Genes, Tissue Specificity, and Expression-Dependent Modulation Contribute to the Functional Diversity of Potassium Channels in Arabidopsis thaliana. Plant Physiology, 109(3), 1093-1106. doi:10.1104/pp.109.3.1093

Müller-Röber, B., Ellenberg, J., Provart, N., Willmitzer, L., Busch, H., Becker, D., … Hedrich, R. (1995). Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. The EMBO Journal, 14(11), 2409-2416. doi:10.1002/j.1460-2075.1995.tb07238.x

Lebaudy, A., Véry, A.-A., & Sentenac, H. (2007). K+channel activity in plants: Genes, regulations and functions. FEBS Letters, 581(12), 2357-2366. doi:10.1016/j.febslet.2007.03.058

Véry, A.-A., Nieves-Cordones, M., Daly, M., Khan, I., Fizames, C., & Sentenac, H. (2014). Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? Journal of Plant Physiology, 171(9), 748-769. doi:10.1016/j.jplph.2014.01.011

Schachtman, D., Schroeder, J., Lucas, W., Anderson, J., & Gaber, R. (1992). Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 258(5088), 1654-1658. doi:10.1126/science.8966547

Gaymard, F., Cerutti, M., Horeau, C., Lemaillet, G., Urbach, S., Ravallec, M., … Thibaud, J.-B. (1996). The Baculovirus/Insect Cell System as an Alternative toXenopusOocytes. Journal of Biological Chemistry, 271(37), 22863-22870. doi:10.1074/jbc.271.37.22863

Su, H., Balderas, E., Vera-Estrella, R., Golldack, D., Quigley, F., Zhao, C., … Bohnert, H. J. (2003). Plant Molecular Biology, 52(5), 967-980. doi:10.1023/a:1025445612244

Paynter, J. J., Andres-Enguix, I., Fowler, P. W., Tottey, S., Cheng, W., Enkvetchakul, D., … Tucker, S. J. (2010). Functional Complementation and Genetic Deletion Studies of KirBac Channels. Journal of Biological Chemistry, 285(52), 40754-40761. doi:10.1074/jbc.m110.175687

Bichet, D., Lin, Y.-F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N., & Jan, L. Y. (2004). Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. Proceedings of the National Academy of Sciences, 101(13), 4441-4446. doi:10.1073/pnas.0401195101

Zaks-Makhina, E., Kim, Y., Aizenman, E., & Levitan, E. S. (2004). Novel Neuroprotective K+ Channel Inhibitor Identified by High-Throughput Screening in Yeast. Molecular Pharmacology, 65(1), 214-219. doi:10.1124/mol.65.1.214

Paynter, J. J., Sarkies, P., Andres-Enguix, I., & Tucker, S. J. (2008). Genetic selection of activatory mutations in KcsA. Channels, 2(6), 413-418. doi:10.4161/chan.2.6.6874

Yenush, L. (2016). Potassium and Sodium Transport in Yeast. Yeast Membrane Transport, 187-228. doi:10.1007/978-3-319-25304-6_8

Gaber, R. F., Styles, C. A., & Fink, G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Molecular and Cellular Biology, 8(7), 2848-2859. doi:10.1128/mcb.8.7.2848

Ko, C. H., & Gaber, R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(8), 4266-4273. doi:10.1128/mcb.11.8.4266

Durell, S. R., & Guy, H. R. (1999). Structural Models of the KtrB, TrkH, and Trk1,2 Symporters Based on the Structure of the KcsA K+ Channel. Biophysical Journal, 77(2), 789-807. doi:10.1016/s0006-3495(99)76932-8

Kuroda, T., Bihler, H., Bashi, E., Slayman, C. L., & Rivetta, A. (2004). Chloride Channel Function in the Yeast TRK-Potassium Transporters. Journal of Membrane Biology, 198(3), 177-192. doi:10.1007/s00232-004-0671-1

Zayats, V., Stockner, T., Pandey, S. K., Wörz, K., Ettrich, R., & Ludwig, J. (2015). A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(5), 1183-1195. doi:10.1016/j.bbamem.2015.02.007

Haro, R., & Rodrı́guez-Navarro, A. (2002). Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1564(1), 114-122. doi:10.1016/s0005-2736(02)00408-x

Ariño, J., Ramos, J., & Sychrová, H. (2010). Alkali Metal Cation Transport and Homeostasis in Yeasts. Microbiology and Molecular Biology Reviews, 74(1), 95-120. doi:10.1128/mmbr.00042-09

Ruiz, A., & Ariño, J. (2007). Function and Regulation of the Saccharomyces cerevisiae ENA Sodium ATPase System. Eukaryotic Cell, 6(12), 2175-2183. doi:10.1128/ec.00337-07

Haro, R., Garciadeblas, B., & Rodriguez-Navarro, A. (1991). A novel P-type ATPase from yeast involved in sodium transport. FEBS Letters, 291(2), 189-191. doi:10.1016/0014-5793(91)81280-l

Benito, B., Garciadeblás, B., & Rodrı́guez-Navarro, A. (2002). Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi The GenBank accession numbers for the sequences reported in this paper are: Pleurotus ostreatus ENA1, AJ420741; Phycomyces blakesleeanus ENA1, AJ420742; Ph. blakesleeanus PCA1, AJ420743; Blakeslea trispora ENA1, AJ420744; B. trispora BCA1, AJ420745; B. trispora BCA2, AJ420746. Microbiology, 148(4), 933-941. doi:10.1099/00221287-148-4-933

Palmgren, M. G., & Nissen, P. (2011). P-Type ATPases. Annual Review of Biophysics, 40(1), 243-266. doi:10.1146/annurev.biophys.093008.131331

Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K., & Kanazawa, H. (2004). Four Na+/H+Exchanger Isoforms Are Distributed to Golgi and Post-Golgi Compartments and Are Involved in Organelle pH Regulation. Journal of Biological Chemistry, 280(2), 1561-1572. doi:10.1074/jbc.m410041200

Ohgaki, R., Nakamura, N., Mitsui, K., & Kanazawa, H. (2005). Characterization of the ion transport activity of the budding yeast Na+/H+ antiporter, Nha1p, using isolated secretory vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1712(2), 185-196. doi:10.1016/j.bbamem.2005.03.011

Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K., & Goldstein, S. A. N. (1995). A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature, 376(6542), 690-695. doi:10.1038/376690a0

Maresova, L., Urbankova, E., Gaskova, D., & Sychrova, H. (2006). Measurements of plasma membrane potential changes inSaccharomyces cerevisiaecells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Research, 6(7), 1039-1046. doi:10.1111/j.1567-1364.2006.00140.x

Ahmed, A., Sesti, F., Ilan, N., Shih, T. M., Sturley, S. L., & Goldstein, S. A. . (1999). A Molecular Target for Viral Killer Toxin. Cell, 99(3), 283-291. doi:10.1016/s0092-8674(00)81659-1

Cagnac, O., Leterrier, M., Yeager, M., & Blumwald, E. (2007). Identification and Characterization of Vnx1p, a Novel Type of Vacuolar Monovalent Cation/H+Antiporter ofSaccharomyces cerevisiae. Journal of Biological Chemistry, 282(33), 24284-24293. doi:10.1074/jbc.m703116200

Petrezselyova, S., Kinclova-Zimmermannova, O., & Sychrova, H. (2013). Vhc1, a novel transporter belonging to the family of electroneutral cation–Cl− cotransporters, participates in the regulation of cation content and morphology of Saccharomyces cerevisiae vacuoles. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828(2), 623-631. doi:10.1016/j.bbamem.2012.09.019

Andre, B., & Scherens, B. (1995). The Yeast YBR235W Gene Encodes a Homolog of the Mammalian Electroneutral Na+-(K+)-Cl− Cotransporter Family. Biochemical and Biophysical Research Communications, 217(1), 150-153. doi:10.1006/bbrc.1995.2757

Nass, R., & Rao, R. (1998). Novel Localization of a Na+/H+Exchanger in a Late Endosomal Compartment of Yeast. Journal of Biological Chemistry, 273(33), 21054-21060. doi:10.1074/jbc.273.33.21054

Long, S. B. (2005). Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel. Science, 309(5736), 897-903. doi:10.1126/science.1116269

Pilot, G., Lacombe, B., Gaymard, F., Chérel, I., Boucherez, J., Thibaud, J.-B., & Sentenac, H. (2000). Guard Cell Inward K+Channel Activity inArabidopsisInvolves Expression of the Twin Channel Subunits KAT1 and KAT2. Journal of Biological Chemistry, 276(5), 3215-3221. doi:10.1074/jbc.m007303200

Saito, S., Hoshi, N., Zulkifli, L., Widyastuti, S., Goshima, S., Dreyer, I., & Uozumi, N. (2017). Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels, 11(6), 510-516. doi:10.1080/19336950.2017.1372066

Nakamura, R. L., Anderson, J. A., & Gaber, R. F. (1997). Determination of Key Structural Requirements of a K+Channel Pore. Journal of Biological Chemistry, 272(2), 1011-1018. doi:10.1074/jbc.272.2.1011

Nakamura, R. L., & Gaber, R. F. (2009). Ion selectivity of the Kat1 K+channel pore. Molecular Membrane Biology, 26(5-7), 293-308. doi:10.1080/09687680903188332

Kochian, L. V., Garvin, D. F., Shaff, J. E., Chilcott, T. C., & Lucas, W. J. (1993). Towards an understanding of the molecular basis of plants K+ transport: Characterization of cloned K+ transport cDNAs. Plant and Soil, 155-156(1), 115-118. doi:10.1007/bf00024997

Lai, H. C., Grabe, M., Jan, Y. N., & Jan, L. Y. (2005). The S4 Voltage Sensor Packs Against the Pore Domain in the KAT1 Voltage-Gated Potassium Channel. Neuron, 47(3), 395-406. doi:10.1016/j.neuron.2005.06.019

Su, Y.-H., North, H., Grignon, C., Thibaud, J.-B., Sentenac, H., & Véry, A.-A. (2005). Regulation by External K+ in a Maize Inward Shaker Channel Targets Transport Activity in the High Concentration Range. The Plant Cell, 17(5), 1532-1548. doi:10.1105/tpc.104.030551

Obata, T., Kitamoto, H. K., Nakamura, A., Fukuda, A., & Tanaka, Y. (2007). Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells. Plant Physiology, 144(4), 1978-1985. doi:10.1104/pp.107.101154

Hirsch, R. E. (1998). A Role for the AKT1 Potassium Channel in Plant Nutrition. Science, 280(5365), 918-921. doi:10.1126/science.280.5365.918

Ahn, S. J., Shin, R., & Schachtman, D. P. (2004). Expression of KT/KUP Genes in Arabidopsis and the Role of Root Hairs in K+ Uptake. Plant Physiology, 134(3), 1135-1145. doi:10.1104/pp.103.034660

Gierth, M., Mäser, P., & Schroeder, J. I. (2005). The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiology, 137(3), 1105-1114. doi:10.1104/pp.104.057216

Ros, R., Lemaillet, G., Fonrouge, A. G., Daram, P., Enjuto, M., Salmon, J. M., … Sentenac, H. (1999). Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels. Physiologia Plantarum, 105(3), 459-468. doi:10.1034/j.1399-3054.1999.105310.x

Hartje, S., Zimmermann, S., Klonus, D., & Mueller-Roeber, B. (2000). Functional characterisation of LKT1, a K + uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K + channel SKT1 after expression in Xenopus oocytes. Planta, 210(5), 723-731. doi:10.1007/s004250050673

BOSCARI, A., CLÉMENT, M., VOLKOV, V., GOLLDACK, D., HYBIAK, J., MILLER, A. J., … FRICKE, W. (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment, 32(12), 1761-1777. doi:10.1111/j.1365-3040.2009.02033.x

Schleyer, M., & Bakker, E. P. (1993). Nucleotide sequence and 3’-end deletion studies indicate that the K(+)-uptake protein kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. Journal of Bacteriology, 175(21), 6925-6931. doi:10.1128/jb.175.21.6925-6931.1993

Bañuelos, M. A., Klein, R. D., Alexander-Bowman, S. J., & Rodríguez-Navarro, A. (1995). A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. The EMBO Journal, 14(13), 3021-3027. doi:10.1002/j.1460-2075.1995.tb07304.x

Santa-María, G. E., Rubio, F., Dubcovsky, J., & Rodríguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell, 9(12), 2281-2289. doi:10.1105/tpc.9.12.2281

Nieves-Cordones, M., Alemán, F., Martínez, V., & Rubio, F. (2010). The Arabidopsis thaliana HAK5 K+ Transporter Is Required for Plant Growth and K+ Acquisition from Low K+ Solutions under Saline Conditions. Molecular Plant, 3(2), 326-333. doi:10.1093/mp/ssp102

Rubio, F., Santa-María, G. E., & Rodríguez-Navarro, A. (2000). Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiologia Plantarum, 109(1), 34-43. doi:10.1034/j.1399-3054.2000.100106.x

Rubio, F., Gassmann, W., & Schroeder, J. I. (1995). Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 270(5242), 1660-1663. doi:10.1126/science.270.5242.1660

Gassmann, W., Rubio, F., & Schroeder, J. I. (1996). Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. The Plant Journal, 10(5), 869-882. doi:10.1046/j.1365-313x.1996.10050869.x

Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., … Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae. Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249

Rubio, F., Schwarz, M., Gassmann, W., & Schroeder, J. I. (1999). Genetic Selection of Mutations in the High Affinity K+Transporter HKT1 That Define Functions of a Loop Site for Reduced Na+Permeability and Increased Na+Tolerance. Journal of Biological Chemistry, 274(11), 6839-6847. doi:10.1074/jbc.274.11.6839

Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., … Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.x

Fairbairn, D. J., Liu, W., Schachtman, D. P., Gomez-Gallego, S., Day, S. R., & Teasdale, R. D. (2000). Plant Molecular Biology, 43(4), 515-525. doi:10.1023/a:1006496402463

Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., & Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. The Plant Journal, 27(2), 129-138. doi:10.1046/j.1365-313x.2001.01077.x

Wang, T.-B., Gassmann, W., Rubio, F., Schroeder, J. I., & Glass, A. D. M. (1998). Rapid Up-Regulation of HKT1, a High-Affinity Potassium Transporter Gene, in Roots of Barley and Wheat following Withdrawal of Potassium. Plant Physiology, 118(2), 651-659. doi:10.1104/pp.118.2.651

Safiarian, M. J., Pertl-Obermeyer, H., Lughofer, P., Hude, R., Bertl, A., & Obermeyer, G. (2015). Lost in traffic? The K+ channel of lily pollen, LilKT1, is detected at the endomembranes inside yeast cells, tobacco leaves, and lily pollen. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00047

Mouline, K. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes & Development, 16(3), 339-350. doi:10.1101/gad.213902

Bihler, H., Eing, C., Hebeisen, S., Roller, A., Czempinski, K., & Bertl, A. (2005). TPK1 Is a Vacuolar Ion Channel Different from the Slow-Vacuolar Cation Channel. Plant Physiology, 139(1), 417-424. doi:10.1104/pp.105.065599

Hamamoto, S., Marui, J., Matsuoka, K., Higashi, K., Igarashi, K., Nakagawa, T., … Uozumi, N. (2007). Characterization of a Tobacco TPK-type K+Channel as a Novel Tonoplast K+Channel Using Yeast Tonoplasts. Journal of Biological Chemistry, 283(4), 1911-1920. doi:10.1074/jbc.m708213200

Goldstein, S. A. N., Bockenhauer, D., O’Kelly, I., & Zilberberg, N. (2001). Potassium leak channels and the KCNK family of two-p-domain subunits. Nature Reviews Neuroscience, 2(3), 175-184. doi:10.1038/35058574

Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., … Hedrich, R. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proceedings of the National Academy of Sciences, 101(44), 15621-15626. doi:10.1073/pnas.0401502101

Apse, M. P. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256

Gaxiola, R. A., Rao, R., Sherman, A., Grisafi, P., Alper, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences, 96(4), 1480-1485. doi:10.1073/pnas.96.4.1480

Bassil, E., Tajima, H., Liang, Y.-C., Ohto, M., Ushijima, K., Nakano, R., … Blumwald, E. (2011). The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 Control Vacuolar pH and K+ Homeostasis to Regulate Growth, Flower Development, and Reproduction. The Plant Cell, 23(9), 3482-3497. doi:10.1105/tpc.111.089581

Plugge, B. (2000). A Potassium Channel Protein Encoded by Chlorella Virus PBCV-1. Science, 287(5458), 1641-1644. doi:10.1126/science.287.5458.1641

Xu, K., Zhang, H., Blumwald, E., & Xia, T. (2010). A Novel Plant Vacuolar Na+/H+Antiporter Gene Evolved by DNA Shuffling Confers Improved Salt Tolerance in Yeast. Journal of Biological Chemistry, 285(30), 22999-23006. doi:10.1074/jbc.m109.073783

Vidal, M., Brachmann, R. K., Fattaey, A., Harlow, E., & Boeke, J. D. (1996). Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proceedings of the National Academy of Sciences, 93(19), 10315-10320. doi:10.1073/pnas.93.19.10315

Leanna, C. (1996). The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Research, 24(17), 3341-3347. doi:10.1093/nar/24.17.3341

Serebriiskii, I., Khazak, V., & Golemis, E. A. (1999). A Two-hybrid Dual Bait System to Discriminate Specificity of Protein Interactions. Journal of Biological Chemistry, 274(24), 17080-17087. doi:10.1074/jbc.274.24.17080

Hirst, M., Ho, C., Sabourin, L., Rudnicki, M., Penn, L., & Sadowski, I. (2001). A two-hybrid system for transactivator bait proteins. Proceedings of the National Academy of Sciences, 98(15), 8726-8731. doi:10.1073/pnas.141413598

Petrascheck, M., Castagna, F., & Barberis, A. (2001). Two-Hybrid Selection Assay to Identify Proteins Interacting with Polymerase II Transcription Factors and Regulators. BioTechniques, 30(2), 296-302. doi:10.2144/01302st02

Johnsson, N., & Varshavsky, A. (1994). Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences, 91(22), 10340-10344. doi:10.1073/pnas.91.22.10340

Stagljar, I., Korostensky, C., Johnsson, N., & te Heesen, S. (1998). A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences, 95(9), 5187-5192. doi:10.1073/pnas.95.9.5187

Hubsman, M. (2001). A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Research, 29(4), 18e-18. doi:10.1093/nar/29.4.e18

Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., & Karin, M. (1997). Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Molecular and Cellular Biology, 17(6), 3094-3102. doi:10.1128/mcb.17.6.3094

Broder, Y. C., Katz, S., & Aronheim, A. (1998). The Ras recruitment system, a novel approach to the study of protein–protein interactions. Current Biology, 8(20), 1121-1130. doi:10.1016/s0960-9822(98)70467-1

Möckli, N., Deplazes, A., Hassa, P. O., Zhang, Z., Peter, M., Hottiger, M. O., … Auerbach, D. (2007). Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. BioTechniques, 42(6), 725-730. doi:10.2144/000112455

Boder, E. T., & Wittrup, K. D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 15(6), 553-557. doi:10.1038/nbt0697-553

Urech, D. M., Lichtlen, P., & Barberis, A. (2003). Cell growth selection system to detect extracellular and transmembrane protein interactions. Biochimica et Biophysica Acta (BBA) - General Subjects, 1622(2), 117-127. doi:10.1016/s0304-4165(03)00133-8

Dube, D. H., Li, B., Greenblatt, E. J., Nimer, S., Raymond, A. K., & Kohler, J. J. (2010). A Two-Hybrid Assay to Study Protein Interactions within the Secretory Pathway. PLoS ONE, 5(12), e15648. doi:10.1371/journal.pone.0015648

Pelletier, J. N., Campbell-Valois, F.-X., & Michnick, S. W. (1998). Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proceedings of the National Academy of Sciences, 95(21), 12141-12146. doi:10.1073/pnas.95.21.12141

Ozawa, T., Kaihara, A., Sato, M., Tachihara, K., & Umezawa, Y. (2001). Split Luciferase as an Optical Probe for Detecting Protein−Protein Interactions in Mammalian Cells Based on Protein Splicing. Analytical Chemistry, 73(11), 2516-2521. doi:10.1021/ac0013296

TAFELMEYER, P. (2004). Transforming a ($beta;/$alpha;)8-Barrel Enzyme into a Split-Protein Sensor through Directed Evolution. Chemistry & Biology, 11(5), 681-689. doi:10.1016/s1074-5521(04)00112-7

Hu, C.-D., Chinenov, Y., & Kerppola, T. K. (2002). Visualization of Interactions among bZIP and Rel Family Proteins in Living Cells Using Bimolecular Fluorescence Complementation. Molecular Cell, 9(4), 789-798. doi:10.1016/s1097-2765(02)00496-3

Magliery, T. J., Wilson, C. G. M., Pan, W., Mishler, D., Ghosh, I., Hamilton, A. D., & Regan, L. (2005). Detecting Protein−Protein Interactions with a Green Fluorescent Protein Fragment Reassembly Trap:  Scope and Mechanism. Journal of the American Chemical Society, 127(1), 146-157. doi:10.1021/ja046699g

Xing, S., Wallmeroth, N., Berendzen, K. W., & Grefen, C. (2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, pp.00470.2016. doi:10.1104/pp.16.00470

Moosavi, B., Mousavi, B., Yang, W.-C., & Yang, G.-F. (2017). Yeast-based assays for detecting protein-protein/drug interactions and their inhibitors. European Journal of Cell Biology, 96(6), 529-541. doi:10.1016/j.ejcb.2017.06.003

Stynen, B., Tournu, H., Tavernier, J., & Van Dijck, P. (2012). Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System. Microbiology and Molecular Biology Reviews, 76(2), 331-382. doi:10.1128/mmbr.05021-11

Brückner, A., Polge, C., Lentze, N., Auerbach, D., & Schlattner, U. (2009). Yeast Two-Hybrid, a Powerful Tool for Systems Biology. International Journal of Molecular Sciences, 10(6), 2763-2788. doi:10.3390/ijms10062763

Gunde, T., Tanner, S., Maur, A. A. der, Petrascheck, M., & Barberis, A. (2004). Quenching accumulation of toxic galactose-1-phosphate as a system to select disruption of protein-protein interactions in vivo. BioTechniques, 37(5), 844-852. doi:10.2144/04375pt03

Obrdlik, P., El-Bakkoury, M., Hamacher, T., Cappellaro, C., Vilarino, C., Fleischer, C., … Frommer, W. B. (2004). K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences, 101(33), 12242-12247. doi:10.1073/pnas.0404467101

Raquet, X., Eckert, J. H., Müller, S., & Johnsson, N. (2001). Detection of altered protein conformations in living cells. Journal of Molecular Biology, 305(4), 927-938. doi:10.1006/jmbi.2000.4239

Kojima, T., Karasawa, S., Miyawaki, A., Tsumuraya, T., & Fujii, I. (2011). Novel screening system for protein–protein interactions by bimolecular fluorescence complementation in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 111(4), 397-401. doi:10.1016/j.jbiosc.2010.12.013

Chérel, I., & Gaillard, I. (2019). The Complex Fine-Tuning of K+ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. International Journal of Molecular Sciences, 20(3), 715. doi:10.3390/ijms20030715

Bregante, M., Yang, Y., Formentin, E., Carpaneto, A., Schroeder, J. I., Gambale, F., … Costa, A. (2007). KDC1, a carrot Shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Molecular Biology, 66(1-2), 61-72. doi:10.1007/s11103-007-9252-x

Sklodowski, K., Riedelsberger, J., Raddatz, N., Riadi, G., Caballero, J., Chérel, I., … Dreyer, I. (2017). The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Scientific Reports, 7(1). doi:10.1038/srep44611

Zhang, A., Ren, H.-M., Tan, Y.-Q., Qi, G.-N., Yao, F.-Y., Wu, G.-L., … Wang, Y.-F. (2016). S-Type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. The Plant Cell, 28(4), 949-965. doi:10.1105/tpc.15.01050

Rosas-Santiago, P., Lagunas-Gómez, D., Barkla, B. J., Vera-Estrella, R., Lalonde, S., Jones, A., … Pantoja, O. (2015). Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany, 66(9), 2733-2748. doi:10.1093/jxb/erv069

Zhang, B., Karnik, R., Wang, Y., Wallmeroth, N., Blatt, M. R., & Grefen, C. (2015). The Arabidopsis R-SNARE VAMP721 Interacts with KAT1 and KC1 K+ Channels to Moderate K+ Current at the Plasma Membrane. The Plant Cell, 27(6), 1697-1717. doi:10.1105/tpc.15.00305

Honsbein, A., Sokolovski, S., Grefen, C., Campanoni, P., Pratelli, R., Paneque, M., … Blatt, M. R. (2009). A Tripartite SNARE-K+ Channel Complex Mediates in Channel-Dependent K+ Nutrition in Arabidopsis. The Plant Cell, 21(9), 2859-2877. doi:10.1105/tpc.109.066118

Ren, X.-L., Qi, G.-N., Feng, H.-Q., Zhao, S., Zhao, S.-S., Wang, Y., & Wu, W.-H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+homeostasis in Arabidopsis. The Plant Journal, 74(2), 258-266. doi:10.1111/tpj.12123

Li, L., Kim, B.-G., Cheong, Y. H., Pandey, G. K., & Luan, S. (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences, 103(33), 12625-12630. doi:10.1073/pnas.0605129103

Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. doi:10.1016/j.cell.2006.06.011

Geiger, D., Becker, D., Vosloh, D., Gambale, F., Palme, K., Rehers, M., … Hedrich, R. (2009). HeteromericAtKC1·AKT1 Channels inArabidopsisRoots Facilitate Growth under K+-limiting Conditions. Journal of Biological Chemistry, 284(32), 21288-21295. doi:10.1074/jbc.m109.017574

Ardie, S. W., Nishiuchi, S., Liu, S., & Takano, T. (2010). Ectopic Expression of the K+ Channel β Subunits from Puccinellia tenuiflora (KPutB1) and Rice (KOB1) Alters K+ Homeostasis of Yeast and Arabidopsis. Molecular Biotechnology, 48(1), 76-86. doi:10.1007/s12033-010-9349-3

Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgé-Faillie, C., … Kudla, J. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 21(7), 1116-1130. doi:10.1038/cr.2011.50

Chérel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., & Thibaud, J.-B. (2002). Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA. The Plant Cell, 14(5), 1133-1146. doi:10.1105/tpc.000943

Vranová, E., Tähtiharju, S., Sriprang, R., Willekens, H., Heino, P., Tapio Palva, E., … Van Camp, W. (2001). The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. Journal of Experimental Botany, 52(354), 181-182. doi:10.1093/jexbot/52.354.181

Lefoulon, C., Boeglin, M., Moreau, B., Véry, A.-A., Szponarski, W., Dauzat, M., … Chérel, I. (2016). TheArabidopsisAtPP2CA Protein Phosphatase Inhibits the GORK K+Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations. Journal of Biological Chemistry, 291(12), 6521-6533. doi:10.1074/jbc.m115.711309

Dreyer, I., Porée, F., Schneider, A., Mittelstädt, J., Bertl, A., Sentenac, H., … Mueller-Roeber, B. (2004). Assembly of Plant Shaker-Like Kout Channels Requires Two Distinct Sites of the Channel α-Subunit. Biophysical Journal, 87(2), 858-872. doi:10.1529/biophysj.103.037671

Liu, L., Zheng, C., Kuang, B., Wei, L., Yan, L., & Wang, T. (2016). Receptor-Like Kinase RUPO Interacts with Potassium Transporters to Regulate Pollen Tube Growth and Integrity in Rice. PLOS Genetics, 12(7), e1006085. doi:10.1371/journal.pgen.1006085

Naso, A., Dreyer, I., Pedemonte, L., Testa, I., Gomez-Porras, J. L., Usai, C., … Picco, C. (2009). The Role of the C-Terminus for Functional Heteromerization of the Plant Channel KDC1. Biophysical Journal, 96(10), 4063-4074. doi:10.1016/j.bpj.2009.02.055

Boneh, U., Biton, I., Schwartz, A., & Ben-Ari, G. (2012). Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Science, 187, 89-96. doi:10.1016/j.plantsci.2012.01.015

Hwang, H., Yoon, J., Kim, H. Y., Min, M. K., Kim, J.-A., Choi, E.-H., … Kim, B.-G. (2013). Unique Features of Two Potassium Channels, OsKAT2 and OsKAT3, Expressed in Rice Guard Cells. PLoS ONE, 8(8), e72541. doi:10.1371/journal.pone.0072541

Ehrhardt, T., Zimmermann, S., & Müller-Röber, B. (1997). Association of plant K+inchannels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Letters, 409(2), 166-170. doi:10.1016/s0014-5793(97)00502-4

Daras, G., Rigas, S., Tsitsekian, D., Iacovides, T. A., & Hatzopoulos, P. (2015). Potassium transporter TRH1 subunits assemble regulating root-hair elongation autonomously from the cell fate determination pathway. Plant Science, 231, 131-137. doi:10.1016/j.plantsci.2014.11.017

Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., … Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochemical Journal, 424(3), 439-448. doi:10.1042/bj20091221

Acharya, B. R., Jeon, B. W., Zhang, W., & Assmann, S. M. (2013). Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytologist, 200(4), 1049-1063. doi:10.1111/nph.12469

Honsbein, A., Blatt, M. R., & Grefen, C. (2010). A molecular framework for coupling cellular volume and osmotic solute transport control. Journal of Experimental Botany, 62(7), 2363-2370. doi:10.1093/jxb/erq386

Sokolovski, S., Hills, A., Gay, R. A., & Blatt, M. R. (2008). Functional Interaction of the SNARE Protein NtSyp121 in Ca2+ Channel Gating, Ca2+ Transients and ABA Signalling of Stomatal Guard Cells. Molecular Plant, 1(2), 347-358. doi:10.1093/mp/ssm029

Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. The Plant Cell, 10(7), 1181-1191. doi:10.1105/tpc.10.7.1181

Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. The Plant Cell, 14(2), 465-477. doi:10.1105/tpc.010371

Guo, Y. (2001). Molecular Characterization of Functional Domains in the Protein Kinase SOS2 That Is Required for Plant Salt Tolerance. THE PLANT CELL ONLINE, 13(6), 1383-1400. doi:10.1105/tpc.13.6.1383

Liu, J. (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 280(5371), 1943-1945. doi:10.1126/science.280.5371.1943

Shi, H., Xiong, L., Stevenson, B., Lu, T., & Zhu, J.-K. (2002). The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance. The Plant Cell, 14(3), 575-588. doi:10.1105/tpc.010417

Shi, H., & Zhu, J.-K. (2002). SOS4, A Pyridoxal Kinase Gene, Is Required for Root Hair Development in Arabidopsis. Plant Physiology, 129(2), 585-593. doi:10.1104/pp.001982

Rueschhoff, E. E., Gillikin, J. W., Sederoff, H. W., & Daub, M. E. (2013). The SOS4 pyridoxal kinase is required for maintenance of vitamin B6-mediated processes in chloroplasts. Plant Physiology and Biochemistry, 63, 281-291. doi:10.1016/j.plaphy.2012.12.003

Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. doi:10.1073/pnas.132092099

Gong, D., Guo, Y., Schumaker, K. S., & Zhu, J.-K. (2004). The SOS3 Family of Calcium Sensors and SOS2 Family of Protein Kinases in Arabidopsis. Plant Physiology, 134(3), 919-926. doi:10.1104/pp.103.037440

Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291

Du, W., Lin, H., Chen, S., Wu, Y., Zhang, J., Fuglsang, A. T., … Guo, Y. (2011). Phosphorylation of SOS3-Like Calcium-Binding Proteins by Their Interacting SOS2-Like Protein Kinases Is a Common Regulatory Mechanism in Arabidopsis. Plant Physiology, 156(4), 2235-2243. doi:10.1104/pp.111.173377

Lin, H., Yang, Y., Quan, R., Mendoza, I., Wu, Y., Du, W., … Guo, Y. (2009). Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 Protein Kinase Stabilizes Their Protein Complex and Regulates Salt Tolerance in Arabidopsis. The Plant Cell, 21(5), 1607-1619. doi:10.1105/tpc.109.066217

Qiu, Q.-S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J.-K. (2003). Regulation of Vacuolar Na+/H+Exchange inArabidopsis thalianaby the Salt-Overly-Sensitive (SOS) Pathway. Journal of Biological Chemistry, 279(1), 207-215. doi:10.1074/jbc.m307982200

Tang, R.-J., Liu, H., Bao, Y., Lv, Q.-D., Yang, L., & Zhang, H.-X. (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology, 74(4-5), 367-380. doi:10.1007/s11103-010-9680-x

Zhou, Y., Yin, X., Duan, R., Hao, G., Guo, J., & Jiang, X. (2015). SpAHA1 and SpSOS1 Coordinate in Transgenic Yeast to Improve Salt Tolerance. PLOS ONE, 10(9), e0137447. doi:10.1371/journal.pone.0137447

HUERTAS, R., OLÍAS, R., ELJAKAOUI, Z., GÁLVEZ, F. J., LI, J., DE MORALES, P. A., … RODRÍGUEZ-ROSALES, M. P. (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant, Cell & Environment, 35(8), 1467-1482. doi:10.1111/j.1365-3040.2012.02504.x

Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J. M., & Cui, D. (2008). Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast. Archives of Biochemistry and Biophysics, 473(1), 8-15. doi:10.1016/j.abb.2008.02.018

Feki, K., Quintero, F. J., Pardo, J. M., & Masmoudi, K. (2011). Regulation of durum wheat Na+/H+ exchanger TdSOS1 by phosphorylation. Plant Molecular Biology, 76(6), 545-556. doi:10.1007/s11103-011-9787-8

Serrano, R., Kielland-Brandt, M. C., & Fink, G. R. (1986). Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Nature, 319(6055), 689-693. doi:10.1038/319689a0

Harper, J. F., Surowy, T. K., & Sussman, M. R. (1989). Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 86(4), 1234-1238. doi:10.1073/pnas.86.4.1234

Palmgren, M. G., & Christensen, G. (1993). Complementation in situ of the yeast plasma membrane H+ -ATPase gene pmal by an H+ -ATPase gene from a heterologous species. FEBS Letters, 317(3), 216-222. doi:10.1016/0014-5793(93)81279-9

Baunsgaard, L., Venema, K., Axelsen, K. B., Villalba, J. M., Welling, A., Wollenweber, B., & Palmgren, M. G. (1996). Modified plant plasma membrane H+-ATPase with improved transport coupling efficiency identified by mutant selection in yeast. The Plant Journal, 10(3), 451-458. doi:10.1046/j.1365-313x.1996.10030451.x

Santiago, J., Dupeux, F., Betz, K., Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., … Rodriguez, P. L. (2012). Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science, 182, 3-11. doi:10.1016/j.plantsci.2010.11.014

Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122

Pizzio, G. A., Rodriguez, L., Antoni, R., Gonzalez-Guzman, M., Yunta, C., Merilo, E., … Rodriguez, P. L. (2013). The PYL4 A194T Mutant Uncovers a Key Role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA Interaction for Abscisic Acid Signaling and Plant Drought Resistance. Plant Physiology, 163(1), 441-455. doi:10.1104/pp.113.224162

Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973

Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178

Okamoto, M., & Cutler, S. R. (2018). Chemical Control of ABA Receptors to Enable Plant Protection Against Water Stress. Plant Chemical Genomics, 127-141. doi:10.1007/978-1-4939-7874-8_11

Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., & Zhang, W. (2015). The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell & Environment, 38(12), 2766-2779. doi:10.1111/pce.12586

Gaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.x

Yenush, L. (2002). The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. The EMBO Journal, 21(5), 920-929. doi:10.1093/emboj/21.5.920

Mulet, J. M., Leube, M. P., Kron, S. J., Rios, G., Fink, G. R., & Serrano, R. (1999). A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter. Molecular and Cellular Biology, 19(5), 3328-3337. doi:10.1128/mcb.19.5.3328

Mendizabal, I., Rios, G., Mulet, J. M., Serrano, R., & de Larrinoa, I. F. (1998). Yeast putative transcription factors involved in salt tolerance. FEBS Letters, 425(2), 323-328. doi:10.1016/s0014-5793(98)00249-x

Ríos, G., Cabedo, M., Rull, B., Yenush, L., Serrano, R., & Mulet, J. M. (2013). Role of the yeast multidrug transporter Qdr2 in cation homeostasis and the oxidative stress response. FEMS Yeast Research, 13(1), 97-106. doi:10.1111/1567-1364.12013

BORDAS, M., MONTESINOS, C., DABAUZA, M., SALVADOR, A., ROIG, L. A., SERRANO, R., & MORENO, V. (1997). Transgenic Research, 6(1), 41-50. doi:10.1023/a:1018453032336

Gisbert, C., Rus, A. M., Boları́n, M. C., López-Coronado, J. M., Arrillaga, I., Montesinos, C., … Moreno, V. (2000). The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato. Plant Physiology, 123(1), 393-402. doi:10.1104/pp.123.1.393

Forment, J., Naranjo, M. A., Roldan, M., Serrano, R., & Vicente, O. (2002). Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. The Plant Journal, 30(5), 511-519. doi:10.1046/j.1365-313x.2002.01311.x

Liu, N., Chen, A.-P., Zhong, N.-Q., Wang, F., Wang, H.-Y., & Xia, G.-X. (2007). Functional screening of salt stress-related genes from Thellungiella halophila using fission yeast system. Physiologia Plantarum, 129(4), 671-678. doi:10.1111/j.1399-3054.2007.00857.x

NARANJO, M. A., FORMENT, J., ROLDAN, M., SERRANO, R., & VICENTE, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell and Environment, 29(10), 1890-1900. doi:10.1111/j.1365-3040.2006.01565.x

Elledge, S. J., Mulligan, J. T., Ramer, S. W., Spottswood, M., & Davis, R. W. (1991). Lambda YES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proceedings of the National Academy of Sciences, 88(5), 1731-1735. doi:10.1073/pnas.88.5.1731

Lippuner, V., Cyert, M. S., & Gasser, C. S. (1996). Two Classes of Plant cDNA Clones Differentially Complement Yeast Calcineurin Mutants and Increase Salt Tolerance of Wild-type Yeast. Journal of Biological Chemistry, 271(22), 12859-12866. doi:10.1074/jbc.271.22.12859

Li, J., Sun, X., Yu, G., Jia, C., Liu, J., & Pan, H. (2014). Generation and Analysis of Expressed Sequence Tags (ESTs) from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes. International Journal of Molecular Sciences, 15(6), 11172-11189. doi:10.3390/ijms150611172

Kanhonou, R., Serrano, R., & Ros Palau, R. (2001). Plant Molecular Biology, 47(5), 571-579. doi:10.1023/a:1012227913356

Rausell, A., Kanhonou, R., Yenush, L., Serrano, R., & Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. The Plant Journal, 34(3), 257-267. doi:10.1046/j.1365-313x.2003.01719.x

Serrano, R., Montesinos, C., Gaxiola, R., Ríos, G., Forment, J., Leube, M., … Ros, R. (2003). FUNCTIONAL GENOMICS OF SALT TOLERANCE: THE YEAST OVEREXPRESSION APPROACH. Acta Horticulturae, (609), 31-38. doi:10.17660/actahortic.2003.609.2

Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076

Porcel, R., Bustamante, A., Ros, R., Serrano, R., & Mulet Salort, J. M. (2018). BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment, 41(12), 2844-2857. doi:10.1111/pce.13416

Kumar, R., Mustafiz, A., Sahoo, K. K., Sharma, V., Samanta, S., Sopory, S. K., … Singla-Pareek, S. L. (2012). Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (OsMPG1) as a key member of salinity stress response. Plant Molecular Biology, 79(6), 555-568. doi:10.1007/s11103-012-9928-8

Chen, Y., Chen, C., Tan, Z., Liu, J., Zhuang, L., Yang, Z., & Huang, B. (2016). Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00102

Patankar, H. V., Al-Harrasi, I., Al-Yahyai, R., & Yaish, M. W. (2018). Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA and Cell Biology, 37(6), 524-534. doi:10.1089/dna.2018.4159

Opekarová, M., & Tanner, W. (2003). Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1610(1), 11-22. doi:10.1016/s0005-2736(02)00708-3

Farrokhi, N., Hrmova, M., Burton, R. A., & Fincher, G. B. (2009). Heterologous and Cell-Free Protein Expression Systems. Methods in Molecular Biology™, 175-198. doi:10.1007/978-1-59745-427-8_10

Veitia, R. A., Caburet, S., & Birchler, J. A. (2017). Mechanisms of Mendelian dominance. Clinical Genetics, 93(3), 419-428. doi:10.1111/cge.13107

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem