- -

Entropy based routing for mobile, low power and lossy wireless sensors networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Entropy based routing for mobile, low power and lossy wireless sensors networks

Mostrar el registro completo del ítem

Carvalho, C.; Mota, E.; Ferraz, E.; Seixas, P.; Souza, P.; Tavares, V.; Lucena Filho, W.... (2019). Entropy based routing for mobile, low power and lossy wireless sensors networks. International Journal of Distributed Sensor Networks (Online). 15(7):1-19. https://doi.org/10.1177/1550147719866134

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/157764

Ficheros en el ítem

Metadatos del ítem

Título: Entropy based routing for mobile, low power and lossy wireless sensors networks
Autor: Carvalho, Celso Mota, Edjair Ferraz, Eric Seixas, Paulo Souza, Paulo Tavares, Vitor Lucena Filho, Walfredo Ferreira, David Manzoni, Pietro Tavares De Araujo Cesariny Calafate, Carlos Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Routing protocol for low-power and lossy networks is a routing solution specifically developed for wireless sensor networks, which does not quickly rebuild topology of mobile networks. In this article, we propose a ...[+]
Palabras clave: Wireless sensor networks , Low-power and lossy networks , Routing protocol for low-power and lossy networks , Routing , Mobility , Internet of Things
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Distributed Sensor Networks (Online). (eissn: 1550-1477 )
DOI: 10.1177/1550147719866134
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1550147719866134
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by SIDIA Institute of Science and Technology, by Coordenacao de ...[+]
Tipo: Artículo

References

Blanco-Novoa, O., Fernández-Caramés, T., Fraga-Lamas, P., & Castedo, L. (2018). A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration. Sensors, 18(7), 2198. doi:10.3390/s18072198

Ding, X., Tian, Y., & Yu, Y. (2016). A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations. IEEE Transactions on Industrial Informatics, 12(3), 1232-1242. doi:10.1109/tii.2015.2436337

Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192-219. doi:10.1016/j.jnca.2015.09.008 [+]
Blanco-Novoa, O., Fernández-Caramés, T., Fraga-Lamas, P., & Castedo, L. (2018). A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration. Sensors, 18(7), 2198. doi:10.3390/s18072198

Ding, X., Tian, Y., & Yu, Y. (2016). A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations. IEEE Transactions on Industrial Informatics, 12(3), 1232-1242. doi:10.1109/tii.2015.2436337

Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192-219. doi:10.1016/j.jnca.2015.09.008

Laurindo, S., Moraes, R., Nassiffe, R., Montez, C., & Vasques, F. (2018). An Optimized Relay Selection Technique to Improve the Communication Reliability in Wireless Sensor Networks. Sensors, 18(10), 3263. doi:10.3390/s18103263

Airehrour, D., Gutierrez, J., & Ray, S. K. (2016). Secure routing for internet of things: A survey. Journal of Network and Computer Applications, 66, 198-213. doi:10.1016/j.jnca.2016.03.006

Mesodiakaki, A., Zola, E., Santos, R., & Kassler, A. (2018). Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links. Ad Hoc Networks, 78, 99-114. doi:10.1016/j.adhoc.2018.05.008

Marszałek, Z., Woźniak, M., & Połap, D. (2018). Fully Flexible Parallel Merge Sort for Multicore Architectures. Complexity, 2018, 1-19. doi:10.1155/2018/8679579

Fotouhi, H., Moreira, D., & Alves, M. (2015). mRPL: Boosting mobility in the Internet of Things. Ad Hoc Networks, 26, 17-35. doi:10.1016/j.adhoc.2014.10.009

Barcelo, M., Correa, A., Vicario, J. L., Morell, A., & Vilajosana, X. (2016). Addressing Mobility in RPL With Position Assisted Metrics. IEEE Sensors Journal, 16(7), 2151-2161. doi:10.1109/jsen.2015.2500916

Bouaziz, M., Rachedi, A., & Belghith, A. (2019). EKF-MRPL: Advanced mobility support routing protocol for internet of mobile things: Movement prediction approach. Future Generation Computer Systems, 93, 822-832. doi:10.1016/j.future.2017.12.015

Fotouhi, H., Moreira, D., Alves, M., & Yomsi, P. M. (2017). mRPL+: A mobility management framework in RPL/6LoWPAN. Computer Communications, 104, 34-54. doi:10.1016/j.comcom.2017.01.020

Iova, O., Picco, P., Istomin, T., & Kiraly, C. (2016). RPL: The Routing Standard for the Internet of Things... Or Is It? IEEE Communications Magazine, 54(12), 16-22. doi:10.1109/mcom.2016.1600397cm

Fotouhi, H., Alves, M., Zamalloa, M. Z., & Koubaa, A. (2014). Reliable and Fast Hand-Offs in Low-Power Wireless Networks. IEEE Transactions on Mobile Computing, 13(11), 2620-2633. doi:10.1109/tmc.2014.2307867

Kamgueu, P. O., Nataf, E., & Ndie, T. D. (2018). Survey on RPL enhancements: A focus on topology, security and mobility. Computer Communications, 120, 10-21. doi:10.1016/j.comcom.2018.02.011

Park, J., Kim, K.-H., & Kim, K. (2017). An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility. Sensors, 17(4), 899. doi:10.3390/s17040899

Stanoev, A., Filiposka, S., In, V., & Kocarev, L. (2016). Cooperative method for wireless sensor network localization. Ad Hoc Networks, 40, 61-72. doi:10.1016/j.adhoc.2016.01.003

Wallgren, L., Raza, S., & Voigt, T. (2013). Routing Attacks and Countermeasures in the RPL-Based Internet of Things. International Journal of Distributed Sensor Networks, 9(8), 794326. doi:10.1155/2013/794326

Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8), 2661-2674. doi:10.1016/j.adhoc.2013.04.014

Zhang, K., Liang, X., Lu, R., & Shen, X. (2014). Sybil Attacks and Their Defenses in the Internet of Things. IEEE Internet of Things Journal, 1(5), 372-383. doi:10.1109/jiot.2014.2344013

Mayzaud, A., Sehgal, A., Badonnel, R., Chrisment, I., & Schönwälder, J. (2015). Mitigation of topological inconsistency attacks in RPL-based low-power lossy networks. International Journal of Network Management, 25(5), 320-339. doi:10.1002/nem.1898

Navidi, W., & Camp, T. (2004). Stationary distributions for the random waypoint mobility model. IEEE Transactions on Mobile Computing, 3(1), 99-108. doi:10.1109/tmc.2004.1261820

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem