Mostrar el registro sencillo del ítem
dc.contributor.author | Carvalho, Celso | es_ES |
dc.contributor.author | Mota, Edjair | es_ES |
dc.contributor.author | Ferraz, Eric | es_ES |
dc.contributor.author | Seixas, Paulo | es_ES |
dc.contributor.author | Souza, Paulo | es_ES |
dc.contributor.author | Tavares, Vitor | es_ES |
dc.contributor.author | Lucena Filho, Walfredo | es_ES |
dc.contributor.author | Ferreira, David | es_ES |
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.contributor.author | Tavares De Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.date.accessioned | 2020-12-23T04:31:43Z | |
dc.date.available | 2020-12-23T04:31:43Z | |
dc.date.issued | 2019-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/157764 | |
dc.description.abstract | [EN] Routing protocol for low-power and lossy networks is a routing solution specifically developed for wireless sensor networks, which does not quickly rebuild topology of mobile networks. In this article, we propose a mechanism based on mobility entropy and integrate it into the corona RPL (CoRPL) mechanism, which is an extension of the IPv6 routing protocol for low-power and lossy networks (RPL). We extensively evaluated our proposal with a simulator for Internet of Things and wireless sensor networks. The mobility entropy-based mechanism, called CoRPL+E, considers the displacement of nodes as a deciding factor to define the links through which nodes communicate. Simulation results show that the proposed mechanism, when compared to CoRPL mechanism, is effective in reducing packet loss and latency in simulated mobile routing protocol for low-power and lossy networks. From the simulation results, one can see that the CoRPL+E proposal mechanism provides a packet loss reduction rate of up to 50% and delays reduction by up to 25% when compared to CoRPL mechanism. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by SIDIA Institute of Science and Technology, by Coordenacao de Aperfeicxoamento de Pessoal de Nivel Superior (CAPES), by Fundacao de Amparo a Pesquisa do Estado do Amazonas (FAPEAM)-support programs (Programa Primeiros Projetos (PPP) and Programa de Tecnologia da Informacao na Amazonia (PROTI)-Amazonia-Mobilidade), by Camara Tecnica de Reconstrucao e Recuperacao de Infraestrutura (CT-INFRA) of Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes(MCTI)/Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), and by Secretaria de Estado de Ciencia, Tecnologia e Inovacao Amazonas (SECTI-AM) and Government of Amazon State, Brazil. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | International Journal of Distributed Sensor Networks (Online) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Wireless sensor networks | es_ES |
dc.subject | Low-power and lossy networks | es_ES |
dc.subject | Routing protocol for low-power and lossy networks | es_ES |
dc.subject | Routing | es_ES |
dc.subject | Mobility | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Entropy based routing for mobile, low power and lossy wireless sensors networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1550147719866134 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Carvalho, C.; Mota, E.; Ferraz, E.; Seixas, P.; Souza, P.; Tavares, V.; Lucena Filho, W.... (2019). Entropy based routing for mobile, low power and lossy wireless sensors networks. International Journal of Distributed Sensor Networks (Online). 15(7):1-19. https://doi.org/10.1177/1550147719866134 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1550147719866134 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 1550-1477 | es_ES |
dc.relation.pasarela | S\392140 | es_ES |
dc.contributor.funder | Governo do Estado do Amazonas | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Sidia Instituto de Ciência e Tecnologia | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado do Amazonas | es_ES |
dc.contributor.funder | Secretaria de Estado de Ciencia, Tecnologia e Inovacao Amazonas | es_ES |
dc.contributor.funder | Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Blanco-Novoa, O., Fernández-Caramés, T., Fraga-Lamas, P., & Castedo, L. (2018). A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration. Sensors, 18(7), 2198. doi:10.3390/s18072198 | es_ES |
dc.description.references | Ding, X., Tian, Y., & Yu, Y. (2016). A Real-Time Big Data Gathering Algorithm Based on Indoor Wireless Sensor Networks for Risk Analysis of Industrial Operations. IEEE Transactions on Industrial Informatics, 12(3), 1232-1242. doi:10.1109/tii.2015.2436337 | es_ES |
dc.description.references | Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192-219. doi:10.1016/j.jnca.2015.09.008 | es_ES |
dc.description.references | Laurindo, S., Moraes, R., Nassiffe, R., Montez, C., & Vasques, F. (2018). An Optimized Relay Selection Technique to Improve the Communication Reliability in Wireless Sensor Networks. Sensors, 18(10), 3263. doi:10.3390/s18103263 | es_ES |
dc.description.references | Airehrour, D., Gutierrez, J., & Ray, S. K. (2016). Secure routing for internet of things: A survey. Journal of Network and Computer Applications, 66, 198-213. doi:10.1016/j.jnca.2016.03.006 | es_ES |
dc.description.references | Mesodiakaki, A., Zola, E., Santos, R., & Kassler, A. (2018). Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links. Ad Hoc Networks, 78, 99-114. doi:10.1016/j.adhoc.2018.05.008 | es_ES |
dc.description.references | Marszałek, Z., Woźniak, M., & Połap, D. (2018). Fully Flexible Parallel Merge Sort for Multicore Architectures. Complexity, 2018, 1-19. doi:10.1155/2018/8679579 | es_ES |
dc.description.references | Fotouhi, H., Moreira, D., & Alves, M. (2015). mRPL: Boosting mobility in the Internet of Things. Ad Hoc Networks, 26, 17-35. doi:10.1016/j.adhoc.2014.10.009 | es_ES |
dc.description.references | Barcelo, M., Correa, A., Vicario, J. L., Morell, A., & Vilajosana, X. (2016). Addressing Mobility in RPL With Position Assisted Metrics. IEEE Sensors Journal, 16(7), 2151-2161. doi:10.1109/jsen.2015.2500916 | es_ES |
dc.description.references | Bouaziz, M., Rachedi, A., & Belghith, A. (2019). EKF-MRPL: Advanced mobility support routing protocol for internet of mobile things: Movement prediction approach. Future Generation Computer Systems, 93, 822-832. doi:10.1016/j.future.2017.12.015 | es_ES |
dc.description.references | Fotouhi, H., Moreira, D., Alves, M., & Yomsi, P. M. (2017). mRPL+: A mobility management framework in RPL/6LoWPAN. Computer Communications, 104, 34-54. doi:10.1016/j.comcom.2017.01.020 | es_ES |
dc.description.references | Iova, O., Picco, P., Istomin, T., & Kiraly, C. (2016). RPL: The Routing Standard for the Internet of Things... Or Is It? IEEE Communications Magazine, 54(12), 16-22. doi:10.1109/mcom.2016.1600397cm | es_ES |
dc.description.references | Fotouhi, H., Alves, M., Zamalloa, M. Z., & Koubaa, A. (2014). Reliable and Fast Hand-Offs in Low-Power Wireless Networks. IEEE Transactions on Mobile Computing, 13(11), 2620-2633. doi:10.1109/tmc.2014.2307867 | es_ES |
dc.description.references | Kamgueu, P. O., Nataf, E., & Ndie, T. D. (2018). Survey on RPL enhancements: A focus on topology, security and mobility. Computer Communications, 120, 10-21. doi:10.1016/j.comcom.2018.02.011 | es_ES |
dc.description.references | Park, J., Kim, K.-H., & Kim, K. (2017). An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility. Sensors, 17(4), 899. doi:10.3390/s17040899 | es_ES |
dc.description.references | Stanoev, A., Filiposka, S., In, V., & Kocarev, L. (2016). Cooperative method for wireless sensor network localization. Ad Hoc Networks, 40, 61-72. doi:10.1016/j.adhoc.2016.01.003 | es_ES |
dc.description.references | Wallgren, L., Raza, S., & Voigt, T. (2013). Routing Attacks and Countermeasures in the RPL-Based Internet of Things. International Journal of Distributed Sensor Networks, 9(8), 794326. doi:10.1155/2013/794326 | es_ES |
dc.description.references | Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Networks, 11(8), 2661-2674. doi:10.1016/j.adhoc.2013.04.014 | es_ES |
dc.description.references | Zhang, K., Liang, X., Lu, R., & Shen, X. (2014). Sybil Attacks and Their Defenses in the Internet of Things. IEEE Internet of Things Journal, 1(5), 372-383. doi:10.1109/jiot.2014.2344013 | es_ES |
dc.description.references | Mayzaud, A., Sehgal, A., Badonnel, R., Chrisment, I., & Schönwälder, J. (2015). Mitigation of topological inconsistency attacks in RPL-based low-power lossy networks. International Journal of Network Management, 25(5), 320-339. doi:10.1002/nem.1898 | es_ES |
dc.description.references | Navidi, W., & Camp, T. (2004). Stationary distributions for the random waypoint mobility model. IEEE Transactions on Mobile Computing, 3(1), 99-108. doi:10.1109/tmc.2004.1261820 | es_ES |