Mostrar el registro sencillo del ítem
dc.contributor.author | Braun, Matías | es_ES |
dc.contributor.author | González Albuixech, Vicente Francisco | es_ES |
dc.date.accessioned | 2021-01-05T04:31:16Z | |
dc.date.available | 2021-01-05T04:31:16Z | |
dc.date.issued | 2019-05 | es_ES |
dc.identifier.issn | 8756-758X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158238 | |
dc.description.abstract | [EN] In this work, the influence of crack propagation velocity in the stress intensity factor has been studied. The analysis is performed with a lattice method and a linear elastic constitutive model. Numerous researchers determined the relationship between the dynamic stress intensity factor and crack propagation velocity with experimental and analytical results. They showed that toughness increases asymptotically when the crack tip velocity is near to a critical. However, these methods are very complex and computationally expensive; furthermore, the model requires the use of several parameters that are not easily obtained. Moreover, its practical implementation is not always feasible. Hence, it is usually omitted. This paper aims to capture the physics of this complex problem with a simple fracture criterion. The selected criterion is based on the maximum principal strain implemented in a lattice model. The method used to calculate the stress intensity factor is validated with other numerical methods. The selected example is a finite 2D notched under mode I fracture and different loads rates. Results show that the proposed model captures the asymptotic behaviour of the SIF in function of crack speed, as reported in the aforementioned models. | es_ES |
dc.description.sponsorship | This work has been carried out within the framework of the research programme Juan de la Cierva Incorporacion 2015 and research projects DPI2013-46641-R, financed by the Ministerio de Economia, Industria y Competitividad. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Fatigue & Fracture of Engineering Materials & Structures | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Crack propagation | es_ES |
dc.subject | Dynamic fracture | es_ES |
dc.subject | Lattice model | es_ES |
dc.subject | Stress intensity factor | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Analysis of the stress intensity factor dependence with the crack velocity using a lattice model | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ffe.12971 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-46641-R/ES/DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y APLICACION A PROCEDIMIENTOS DE EVALUACION DEL RIESGO DE FRACTURA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Braun, M.; González Albuixech, VF. (2019). Analysis of the stress intensity factor dependence with the crack velocity using a lattice model. Fatigue & Fracture of Engineering Materials & Structures. 42(5):1075-1084. https://doi.org/10.1111/ffe.12971 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/ffe.12971 | es_ES |
dc.description.upvformatpinicio | 1075 | es_ES |
dc.description.upvformatpfin | 1084 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\377216 | es_ES |
dc.description.references | KobayashiT DallyJ.Relation between crack velocity and the stress intensity factor in birefringent polymers. ASTM Int;1977. | es_ES |
dc.description.references | Dally, J. W. (1979). Dynamic photoelastic studies of fracture. Experimental Mechanics, 19(10), 349-361. doi:10.1007/bf02324250 | es_ES |
dc.description.references | Freund, L. B., & Douglas, A. S. (1982). The influence of inertia on elastic-plastic antiplane-shear crack growth. Journal of the Mechanics and Physics of Solids, 30(1-2), 59-74. doi:10.1016/0022-5096(82)90013-8 | es_ES |
dc.description.references | LAM, P., & FREUND, L. (1985). Analysis of dynamic growth of a tensile crack in an elastic-plastic material. Journal of the Mechanics and Physics of Solids, 33(2), 153-167. doi:10.1016/0022-5096(85)90028-6 | es_ES |
dc.description.references | Costanzo, F., & Walton, J. R. (1998). International Journal of Fracture, 91(4), 373-389. doi:10.1023/a:1007494031596 | es_ES |
dc.description.references | Bui, T. Q. (2015). Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Computer Methods in Applied Mechanics and Engineering, 295, 470-509. doi:10.1016/j.cma.2015.07.005 | es_ES |
dc.description.references | Bui, T. Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.-T., Saitoh, T., & Lei, J. (2016). Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites. Mechanics of Materials, 97, 135-163. doi:10.1016/j.mechmat.2016.03.001 | es_ES |
dc.description.references | Doan, D. H., Bui, T. Q., Van Do, T., & Duc, N. D. (2017). A rate-dependent hybrid phase field model for dynamic crack propagation. Journal of Applied Physics, 122(11), 115102. doi:10.1063/1.4990073 | es_ES |
dc.description.references | Dominguez, J., & Gallego, R. (1992). Time domain boundary element method for dynamic stress intensity factor computations. International Journal for Numerical Methods in Engineering, 33(3), 635-647. doi:10.1002/nme.1620330309 | es_ES |
dc.description.references | Szelestey, P., Heino, P., Kertész, J., & Kaski, K. (2000). Effect of anisotropy on the instability of crack propagation. Physical Review E, 61(4), 3378-3383. doi:10.1103/physreve.61.3378 | es_ES |
dc.description.references | Moran, B., & Shih, C. F. (1987). Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics, 27(6), 615-642. doi:10.1016/0013-7944(87)90155-x | es_ES |