- -

Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon

Show full item record

Cervera-Seco, L.; Marques, M.; Sanz-Carbonell, A.; Márquez-Molins, J.; Carbonell, A.; Daros Arnau, JA.; Gomez, GG. (2019). Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. Plant and Cell Physiology. 60(11):2382-2393. https://doi.org/10.1093/pcp/pcz131

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158398

Files in this item

Item Metadata

Title: Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon
Author: Cervera-Seco, Luis Marques, M.C. Sanz-Carbonell, Alejandro Márquez-Molins, Joan CARBONELL, ALBERTO DAROS ARNAU, JOSE ANTONIO Gomez, Gustavo Germán
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the ...[+]
Subjects: Cucurbitaceae , NcRNAs , Plant-environment interactions , Regulation of the stress response in crops , RNA silencing , Small RNAs in melon
Copyrigths: Reserva de todos los derechos
Source:
Plant and Cell Physiology. (issn: 0032-0781 )
DOI: 10.1093/pcp/pcz131
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/pcp/pcz131
Project ID:
info:eu-repo/grantAgreement/MINECO//BIO2014-61826-EXP/ES/OPTIMIZACION PARA USO A ESCALA INDUSTRIAL DE UN SISTEMA PARA LA EXPRESION SELECTIVA DE COMPUESTOS HETEROLOGOS EN CLOROPLASTOS MEDIADO POR NON-CODING RNAS/
info:eu-repo/grantAgreement/MINECO//AGL2016-79825-R/ES/VALIDACION FUNCIONAL DE LAS REDES DE SNCRNAS QUE REGULAN LA REPUESTA A ESTRES EN MELON. ANALISIS DE SU POTENCIAL COMO FUENTE DE TOLERANCIA A CONDICIONES AMBIENTALES ADVERSAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095118-A-I00/ES/COMPLEJOS ARGONAUTA1 DE PLANTAS: IDENTIFICACION DE SUS COMPONENTES PROTEICOS Y DE RNA, Y AJUSTE FINO DEL SILENCIAMIENTO MEDIANTE SU PROGRAMACION POR PEQUEÑOS RNAS ARTIFICIALES/
Thanks:
J.M. was the recipient of a predoctoral contract from the ACIF program (ACIF-2017-114) of the Conselleria d¿Educació, Investigació, Cultura i Esport Generalitat Valenciana. A.C. was the recipient of a postdoctoral contract ...[+]
Type: Artículo

References

Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouché, N., Gasciolli, V., & Vaucheret, H. (2006). DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Current Biology, 16(9), 927-932. doi:10.1016/j.cub.2006.03.035

Allen, E., & Howell, M. D. (2010). miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Seminars in Cell & Developmental Biology, 21(8), 798-804. doi:10.1016/j.semcdb.2010.03.008

Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 121(2), 207-221. doi:10.1016/j.cell.2005.04.004 [+]
Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouché, N., Gasciolli, V., & Vaucheret, H. (2006). DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Current Biology, 16(9), 927-932. doi:10.1016/j.cub.2006.03.035

Allen, E., & Howell, M. D. (2010). miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Seminars in Cell & Developmental Biology, 21(8), 798-804. doi:10.1016/j.semcdb.2010.03.008

Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 121(2), 207-221. doi:10.1016/j.cell.2005.04.004

Arif, M. A., Fattash, I., Ma, Z., Cho, S. H., Beike, A. K., Reski, R., … Frank, W. (2012). DICER-LIKE3 Activity in Physcomitrella patens DICER-LIKE4 Mutants Causes Severe Developmental Dysfunction and Sterility. Molecular Plant, 5(6), 1281-1294. doi:10.1093/mp/sss036

Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043

Axtell, M. J., Jan, C., Rajagopalan, R., & Bartel, D. P. (2006). A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell, 127(3), 565-577. doi:10.1016/j.cell.2006.09.032

Banerjee, S., Sirohi, A., Ansari, A. A., & Gill, S. S. (2017). Role of small RNAs in abiotic stress responses in plants. Plant Gene, 11, 180-189. doi:10.1016/j.plgene.2017.04.005

Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs inArabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728

Borges, F., & Martienssen, R. A. (2015). The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. doi:10.1038/nrm4085

Bustamante, A., Marques, M. C., Sanz-Carbonell, A., Mulet, J. M., & Gomez, G. (2018). Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports, 8(1). doi:10.1038/s41598-018-34012-7

Cabrera, J., Barcala, M., García, A., Rio-Machín, A., Medina, C., Jaubert-Possamai, S., … Escobar, C. (2015). Differentially expressed small RNAs in Arabidopsis galls formed byMeloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytologist, 209(4), 1625-1640. doi:10.1111/nph.13735

Calanca, P. P. (2016). Effects of Abiotic Stress in Crop Production. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, 165-180. doi:10.1007/978-3-319-32059-5_8

Carbonell, A. (2017). Plant ARGONAUTEs: Features, Functions, and Unknowns. Plant Argonaute Proteins, 1-21. doi:10.1007/978-1-4939-7165-7_1

Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529

Chitwood, D. H., Nogueira, F. T. S., Howell, M. D., Montgomery, T. A., Carrington, J. C., & Timmermans, M. C. P. (2009). Pattern formation via small RNA mobility. Genes & Development, 23(5), 549-554. doi:10.1101/gad.1770009

Clepet, C., Joobeur, T., Zheng, Y., Jublot, D., Huang, M., Truniger, V., … Fei, Z. (2011). Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-252

Czimmerer, Z., Hulvely, J., Simandi, Z., Varallyay, E., Havelda, Z., Szabo, E., … Balint, B. L. (2013). A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS ONE, 8(1), e55168. doi:10.1371/journal.pone.0055168

D’Ario, M., Griffiths-Jones, S., & Kim, M. (2017). Small RNAs: Big Impact on Plant Development. Trends in Plant Science, 22(12), 1056-1068. doi:10.1016/j.tplants.2017.09.009

Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316

De Felippes, F. F., Marchais, A., Sarazin, A., Oberlin, S., & Voinnet, O. (2017). A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Research, 45(9), 5539-5554. doi:10.1093/nar/gkx119

Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., & Carrington, J. C. (2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Current Biology, 16(9), 939-944. doi:10.1016/j.cub.2006.03.065

Fei, Q., Xia, R., & Meyers, B. C. (2013). Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks. The Plant Cell, 25(7), 2400-2415. doi:10.1105/tpc.113.114652

Fukunaga, R., & Doudna, J. A. (2009). dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. The EMBO Journal, 28(5), 545-555. doi:10.1038/emboj.2009.2

Garcia, D., Collier, S. A., Byrne, M. E., & Martienssen, R. A. (2006). Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway. Current Biology, 16(9), 933-938. doi:10.1016/j.cub.2006.03.064

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109

Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x

González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289

Gonzalez-Ibeas, D., Blanca, J., Donaire, L., Saladié, M., Mascarell-Creus, A., Cano-Delgado, A., … Aranda, M. A. (2011). Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-393

Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453-460. doi:10.1016/j.pbi.2007.08.014

He, F., Xu, C., Fu, X., Shen, Y., Guo, L., Leng, M., & Luo, K. (2018). The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway. Plant Physiology, 177(2), 775-791. doi:10.1104/pp.17.01559

Heisel, S. E., Zhang, Y., Allen, E., Guo, L., Reynolds, T. L., Yang, X., … Roberts, J. K. (2008). Characterization of Unique Small RNA Populations from Rice Grain. PLoS ONE, 3(8), e2871. doi:10.1371/journal.pone.0002871

Hou, J., Zhou, Y.-F., Gao, L.-Y., Wang, Y.-L., Yang, L.-M., Zhu, H.-Y., … Hu, J.-B. (2018). Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01577

Howell, M. D., Fahlgren, N., Chapman, E. J., Cumbie, J. S., Sullivan, C. M., Givan, S. A., … Carrington, J. C. (2007). Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. The Plant Cell, 19(3), 926-942. doi:10.1105/tpc.107.050062

Hsieh, L.-C., Lin, S.-I., Shih, A. C.-C., Chen, J.-W., Lin, W.-Y., Tseng, C.-Y., … Chiou, T.-J. (2009). Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 151(4), 2120-2132. doi:10.1104/pp.109.147280

Hu, W., Zuo, J., Hou, X., Yan, Y., Wei, Y., Liu, J., … Jin, Z. (2015). The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00742

Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., … Wang, L. (2018). Plant microRNAs: Front line players against invading pathogens. Microbial Pathogenesis, 118, 9-17. doi:10.1016/j.micpath.2018.03.008

Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Journal, 276(11), 3148-3162. doi:10.1111/j.1742-4658.2009.07033.x

Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.-L., Walbot, V., … Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 19(8), 1429-1440. doi:10.1101/gr.089854.108

Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00506

Kumar, R. (2014). Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Applied Biochemistry and Biotechnology, 174(1), 93-115. doi:10.1007/s12010-014-0914-2

Kumar, V., Khare, T., Shriram, V., & Wani, S. H. (2017). Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Reports, 37(1), 61-75. doi:10.1007/s00299-017-2210-4

Li, F., Pignatta, D., Bendix, C., Brunkard, J. O., Cohn, M. M., Tung, J., … Baker, B. (2012). MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences, 109(5), 1790-1795. doi:10.1073/pnas.1118282109

Li, S., Castillo-González, C., Yu, B., & Zhang, X. (2017). The functions of plant small RNAs in development and in stress responses. The Plant Journal, 90(4), 654-670. doi:10.1111/tpj.13444

Li, X., Lei, M., Yan, Z., Wang, Q., Chen, A., Sun, J., … Wang, Y. (2013). The REL3-mediatedTAS3ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation inLotus japonicus. New Phytologist, 201(2), 531-544. doi:10.1111/nph.12550

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). doi:10.1186/s13059-014-0550-8

Luo, Q.-J., Mittal, A., Jia, F., & Rock, C. D. (2011). An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Molecular Biology, 80(1), 117-129. doi:10.1007/s11103-011-9778-9

Marin, E., Jouannet, V., Herz, A., Lokerse, A. S., Weijers, D., Vaucheret, H., … Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. The Plant Cell, 22(4), 1104-1117. doi:10.1105/tpc.109.072553

Martinez, G., & Köhler, C. (2017). Role of small RNAs in epigenetic reprogramming during plant sexual reproduction. Current Opinion in Plant Biology, 36, 22-28. doi:10.1016/j.pbi.2016.12.006

Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034

Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2009). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165-177. doi:10.1093/jxb/erp296

Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033

Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105

Ruggieri, V., Alexiou, K. G., Morata, J., Argyris, J., Pujol, M., Yano, R., … Garcia-Mas, J. (2018). An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Scientific Reports, 8(1). doi:10.1038/s41598-018-26416-2

Sanz-Carbonell, A., Marques, M. C., Bustamante, A., Fares, M. A., Rodrigo, G., & Gomez, G. (2019). Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1679-0

SHEN, C., WANG, S., ZHANG, S., XU, Y., QIAN, Q., QI, Y., & JIANG, D. A. (2012). OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativaL.). Plant, Cell & Environment, 36(3), 607-620. doi:10.1111/pce.12001

Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., & Wani, S. H. (2016). MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00817

Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12(7), 301-309. doi:10.1016/j.tplants.2007.05.001

Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010

Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043

Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., & Arazi, T. (2006). Identification oftrans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. The Plant Journal, 48(4), 511-521. doi:10.1111/j.1365-313x.2006.02895.x

Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., … Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics, 10(4), 533-546. doi:10.1007/s10142-010-0174-3

Wang, S., Zhang, S., Sun, C., Xu, Y., Chen, Y., Yu, C., … Qi, Y. (2013). Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytologist, 201(1), 91-103. doi:10.1111/nph.12499

Williams, L., Carles, C. C., Osmont, K. S., & Fletcher, J. C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences, 102(27), 9703-9708. doi:10.1073/pnas.0504029102

Wu, F., Chen, Y., Tian, X., Zhu, X., & Jin, W. (2017). Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Scientific Reports, 7(1). doi:10.1038/s41598-017-02233-x

Wu, S., Zhang, B., Keyhaninejad, N., Rodríguez, G. R., Kim, H. J., Chakrabarti, M., … van der Knaap, E. (2018). A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 9(1). doi:10.1038/s41467-018-07216-8

Xia, R., Zhu, H., An, Y., Beers, E. P., & Liu, Z. (2012). Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 13(6), R47. doi:10.1186/gb-2012-13-6-r47

Xu, Y.-X., Mao, J., Chen, W., Qian, T.-T., Liu, S.-C., Hao, W.-J., … Chen, L. (2016). Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiology and Biochemistry, 98, 46-56. doi:10.1016/j.plaphy.2015.11.014

Yang, T., Wang, Y., Teotia, S., Zhang, Z., & Tang, G. (2018). The Making of Leaves: How Small RNA Networks Modulate Leaf Development. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00824

Yifhar, T., Pekker, I., Peled, D., Friedlander, G., Pistunov, A., Sabban, M., … Eshed, Y. (2012). Failure of the Tomato Trans-Acting Short Interfering RNA Program to Regulate AUXIN RESPONSE FACTOR3 and ARF4 Underlies the Wiry Leaf Syndrome. The Plant Cell, 24(9), 3575-3589. doi:10.1105/tpc.112.100222

Yu, C., Zhan, Y., Feng, X., Huang, Z.-A., & Sun, C. (2017). Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments. International Journal of Molecular Sciences, 18(12), 2719. doi:10.3390/ijms18122719

Zhou, C., Han, L., Fu, C., Wen, J., Cheng, X., Nakashima, J., … Wang, Z.-Y. (2013). The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicagotruncatula. The Plant Cell, 25(12), 4845-4862. doi:10.1105/tpc.113.117788

Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024

Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record