- -

Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cervera-Seco, Luis es_ES
dc.contributor.author Marques, M.C. es_ES
dc.contributor.author Sanz-Carbonell, Alejandro es_ES
dc.contributor.author Márquez-Molins, Joan es_ES
dc.contributor.author CARBONELL, ALBERTO es_ES
dc.contributor.author DAROS ARNAU, JOSE ANTONIO es_ES
dc.contributor.author Gomez, Gustavo Germán es_ES
dc.date.accessioned 2021-01-08T04:31:19Z
dc.date.available 2021-01-08T04:31:19Z
dc.date.issued 2019-11 es_ES
dc.identifier.issn 0032-0781 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158398
dc.description.abstract [EN] Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts. es_ES
dc.description.sponsorship J.M. was the recipient of a predoctoral contract from the ACIF program (ACIF-2017-114) of the Conselleria d¿Educació, Investigació, Cultura i Esport Generalitat Valenciana. A.C. was the recipient of a postdoctoral contract from the Ramón y Cajal program (RYC-2017-21648) from the Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union). The Spanish Ministry of Economy and Competitiveness [grant numbers AGL2016-79825-R, BIO2014-61826-EXP to G.G.]; the Ministerio de Ciencia, Innovacion y Universidades (MCIU, Spain), Agencia Estatal de Investigacion (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) [grant numbers BIO2017-83184-R to J.-A.D. and RTI2018-095118-A-100 to A.C.]. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Plant and Cell Physiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cucurbitaceae es_ES
dc.subject NcRNAs es_ES
dc.subject Plant-environment interactions es_ES
dc.subject Regulation of the stress response in crops es_ES
dc.subject RNA silencing es_ES
dc.subject Small RNAs in melon es_ES
dc.title Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/pcp/pcz131 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-61826-EXP/ES/OPTIMIZACION PARA USO A ESCALA INDUSTRIAL DE UN SISTEMA PARA LA EXPRESION SELECTIVA DE COMPUESTOS HETEROLOGOS EN CLOROPLASTOS MEDIADO POR NON-CODING RNAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-79825-R/ES/VALIDACION FUNCIONAL DE LAS REDES DE SNCRNAS QUE REGULAN LA REPUESTA A ESTRES EN MELON. ANALISIS DE SU POTENCIAL COMO FUENTE DE TOLERANCIA A CONDICIONES AMBIENTALES ADVERSAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095118-A-I00/ES/COMPLEJOS ARGONAUTA1 DE PLANTAS: IDENTIFICACION DE SUS COMPONENTES PROTEICOS Y DE RNA, Y AJUSTE FINO DEL SILENCIAMIENTO MEDIANTE SU PROGRAMACION POR PEQUEÑOS RNAS ARTIFICIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Cervera-Seco, L.; Marques, M.; Sanz-Carbonell, A.; Márquez-Molins, J.; Carbonell, A.; Daros Arnau, JA.; Gomez, GG. (2019). Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. Plant and Cell Physiology. 60(11):2382-2393. https://doi.org/10.1093/pcp/pcz131 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/pcp/pcz131 es_ES
dc.description.upvformatpinicio 2382 es_ES
dc.description.upvformatpfin 2393 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 31290971 es_ES
dc.relation.pasarela S\406644 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouché, N., Gasciolli, V., & Vaucheret, H. (2006). DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Current Biology, 16(9), 927-932. doi:10.1016/j.cub.2006.03.035 es_ES
dc.description.references Allen, E., & Howell, M. D. (2010). miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Seminars in Cell & Developmental Biology, 21(8), 798-804. doi:10.1016/j.semcdb.2010.03.008 es_ES
dc.description.references Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 121(2), 207-221. doi:10.1016/j.cell.2005.04.004 es_ES
dc.description.references Arif, M. A., Fattash, I., Ma, Z., Cho, S. H., Beike, A. K., Reski, R., … Frank, W. (2012). DICER-LIKE3 Activity in Physcomitrella patens DICER-LIKE4 Mutants Causes Severe Developmental Dysfunction and Sterility. Molecular Plant, 5(6), 1281-1294. doi:10.1093/mp/sss036 es_ES
dc.description.references Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043 es_ES
dc.description.references Axtell, M. J., Jan, C., Rajagopalan, R., & Bartel, D. P. (2006). A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell, 127(3), 565-577. doi:10.1016/j.cell.2006.09.032 es_ES
dc.description.references Banerjee, S., Sirohi, A., Ansari, A. A., & Gill, S. S. (2017). Role of small RNAs in abiotic stress responses in plants. Plant Gene, 11, 180-189. doi:10.1016/j.plgene.2017.04.005 es_ES
dc.description.references Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs inArabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728 es_ES
dc.description.references Borges, F., & Martienssen, R. A. (2015). The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. doi:10.1038/nrm4085 es_ES
dc.description.references Bustamante, A., Marques, M. C., Sanz-Carbonell, A., Mulet, J. M., & Gomez, G. (2018). Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports, 8(1). doi:10.1038/s41598-018-34012-7 es_ES
dc.description.references Cabrera, J., Barcala, M., García, A., Rio-Machín, A., Medina, C., Jaubert-Possamai, S., … Escobar, C. (2015). Differentially expressed small RNAs in Arabidopsis galls formed byMeloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytologist, 209(4), 1625-1640. doi:10.1111/nph.13735 es_ES
dc.description.references Calanca, P. P. (2016). Effects of Abiotic Stress in Crop Production. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, 165-180. doi:10.1007/978-3-319-32059-5_8 es_ES
dc.description.references Carbonell, A. (2017). Plant ARGONAUTEs: Features, Functions, and Unknowns. Plant Argonaute Proteins, 1-21. doi:10.1007/978-1-4939-7165-7_1 es_ES
dc.description.references Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529 es_ES
dc.description.references Chitwood, D. H., Nogueira, F. T. S., Howell, M. D., Montgomery, T. A., Carrington, J. C., & Timmermans, M. C. P. (2009). Pattern formation via small RNA mobility. Genes & Development, 23(5), 549-554. doi:10.1101/gad.1770009 es_ES
dc.description.references Clepet, C., Joobeur, T., Zheng, Y., Jublot, D., Huang, M., Truniger, V., … Fei, Z. (2011). Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-252 es_ES
dc.description.references Czimmerer, Z., Hulvely, J., Simandi, Z., Varallyay, E., Havelda, Z., Szabo, E., … Balint, B. L. (2013). A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS ONE, 8(1), e55168. doi:10.1371/journal.pone.0055168 es_ES
dc.description.references D’Ario, M., Griffiths-Jones, S., & Kim, M. (2017). Small RNAs: Big Impact on Plant Development. Trends in Plant Science, 22(12), 1056-1068. doi:10.1016/j.tplants.2017.09.009 es_ES
dc.description.references Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316 es_ES
dc.description.references De Felippes, F. F., Marchais, A., Sarazin, A., Oberlin, S., & Voinnet, O. (2017). A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Research, 45(9), 5539-5554. doi:10.1093/nar/gkx119 es_ES
dc.description.references Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., & Carrington, J. C. (2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Current Biology, 16(9), 939-944. doi:10.1016/j.cub.2006.03.065 es_ES
dc.description.references Fei, Q., Xia, R., & Meyers, B. C. (2013). Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks. The Plant Cell, 25(7), 2400-2415. doi:10.1105/tpc.113.114652 es_ES
dc.description.references Fukunaga, R., & Doudna, J. A. (2009). dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. The EMBO Journal, 28(5), 545-555. doi:10.1038/emboj.2009.2 es_ES
dc.description.references Garcia, D., Collier, S. A., Byrne, M. E., & Martienssen, R. A. (2006). Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway. Current Biology, 16(9), 933-938. doi:10.1016/j.cub.2006.03.064 es_ES
dc.description.references Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 es_ES
dc.description.references Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x es_ES
dc.description.references González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289 es_ES
dc.description.references Gonzalez-Ibeas, D., Blanca, J., Donaire, L., Saladié, M., Mascarell-Creus, A., Cano-Delgado, A., … Aranda, M. A. (2011). Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-393 es_ES
dc.description.references Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453-460. doi:10.1016/j.pbi.2007.08.014 es_ES
dc.description.references He, F., Xu, C., Fu, X., Shen, Y., Guo, L., Leng, M., & Luo, K. (2018). The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway. Plant Physiology, 177(2), 775-791. doi:10.1104/pp.17.01559 es_ES
dc.description.references Heisel, S. E., Zhang, Y., Allen, E., Guo, L., Reynolds, T. L., Yang, X., … Roberts, J. K. (2008). Characterization of Unique Small RNA Populations from Rice Grain. PLoS ONE, 3(8), e2871. doi:10.1371/journal.pone.0002871 es_ES
dc.description.references Hou, J., Zhou, Y.-F., Gao, L.-Y., Wang, Y.-L., Yang, L.-M., Zhu, H.-Y., … Hu, J.-B. (2018). Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01577 es_ES
dc.description.references Howell, M. D., Fahlgren, N., Chapman, E. J., Cumbie, J. S., Sullivan, C. M., Givan, S. A., … Carrington, J. C. (2007). Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. The Plant Cell, 19(3), 926-942. doi:10.1105/tpc.107.050062 es_ES
dc.description.references Hsieh, L.-C., Lin, S.-I., Shih, A. C.-C., Chen, J.-W., Lin, W.-Y., Tseng, C.-Y., … Chiou, T.-J. (2009). Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 151(4), 2120-2132. doi:10.1104/pp.109.147280 es_ES
dc.description.references Hu, W., Zuo, J., Hou, X., Yan, Y., Wei, Y., Liu, J., … Jin, Z. (2015). The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00742 es_ES
dc.description.references Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., … Wang, L. (2018). Plant microRNAs: Front line players against invading pathogens. Microbial Pathogenesis, 118, 9-17. doi:10.1016/j.micpath.2018.03.008 es_ES
dc.description.references Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Journal, 276(11), 3148-3162. doi:10.1111/j.1742-4658.2009.07033.x es_ES
dc.description.references Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.-L., Walbot, V., … Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 19(8), 1429-1440. doi:10.1101/gr.089854.108 es_ES
dc.description.references Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00506 es_ES
dc.description.references Kumar, R. (2014). Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Applied Biochemistry and Biotechnology, 174(1), 93-115. doi:10.1007/s12010-014-0914-2 es_ES
dc.description.references Kumar, V., Khare, T., Shriram, V., & Wani, S. H. (2017). Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Reports, 37(1), 61-75. doi:10.1007/s00299-017-2210-4 es_ES
dc.description.references Li, F., Pignatta, D., Bendix, C., Brunkard, J. O., Cohn, M. M., Tung, J., … Baker, B. (2012). MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences, 109(5), 1790-1795. doi:10.1073/pnas.1118282109 es_ES
dc.description.references Li, S., Castillo-González, C., Yu, B., & Zhang, X. (2017). The functions of plant small RNAs in development and in stress responses. The Plant Journal, 90(4), 654-670. doi:10.1111/tpj.13444 es_ES
dc.description.references Li, X., Lei, M., Yan, Z., Wang, Q., Chen, A., Sun, J., … Wang, Y. (2013). The REL3-mediatedTAS3ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation inLotus japonicus. New Phytologist, 201(2), 531-544. doi:10.1111/nph.12550 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). doi:10.1186/s13059-014-0550-8 es_ES
dc.description.references Luo, Q.-J., Mittal, A., Jia, F., & Rock, C. D. (2011). An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Molecular Biology, 80(1), 117-129. doi:10.1007/s11103-011-9778-9 es_ES
dc.description.references Marin, E., Jouannet, V., Herz, A., Lokerse, A. S., Weijers, D., Vaucheret, H., … Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. The Plant Cell, 22(4), 1104-1117. doi:10.1105/tpc.109.072553 es_ES
dc.description.references Martinez, G., & Köhler, C. (2017). Role of small RNAs in epigenetic reprogramming during plant sexual reproduction. Current Opinion in Plant Biology, 36, 22-28. doi:10.1016/j.pbi.2016.12.006 es_ES
dc.description.references Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034 es_ES
dc.description.references Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2009). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165-177. doi:10.1093/jxb/erp296 es_ES
dc.description.references Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033 es_ES
dc.description.references Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105 es_ES
dc.description.references Ruggieri, V., Alexiou, K. G., Morata, J., Argyris, J., Pujol, M., Yano, R., … Garcia-Mas, J. (2018). An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Scientific Reports, 8(1). doi:10.1038/s41598-018-26416-2 es_ES
dc.description.references Sanz-Carbonell, A., Marques, M. C., Bustamante, A., Fares, M. A., Rodrigo, G., & Gomez, G. (2019). Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1679-0 es_ES
dc.description.references SHEN, C., WANG, S., ZHANG, S., XU, Y., QIAN, Q., QI, Y., & JIANG, D. A. (2012). OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativaL.). Plant, Cell & Environment, 36(3), 607-620. doi:10.1111/pce.12001 es_ES
dc.description.references Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., & Wani, S. H. (2016). MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00817 es_ES
dc.description.references Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12(7), 301-309. doi:10.1016/j.tplants.2007.05.001 es_ES
dc.description.references Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010 es_ES
dc.description.references Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043 es_ES
dc.description.references Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., & Arazi, T. (2006). Identification oftrans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. The Plant Journal, 48(4), 511-521. doi:10.1111/j.1365-313x.2006.02895.x es_ES
dc.description.references Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., … Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics, 10(4), 533-546. doi:10.1007/s10142-010-0174-3 es_ES
dc.description.references Wang, S., Zhang, S., Sun, C., Xu, Y., Chen, Y., Yu, C., … Qi, Y. (2013). Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytologist, 201(1), 91-103. doi:10.1111/nph.12499 es_ES
dc.description.references Williams, L., Carles, C. C., Osmont, K. S., & Fletcher, J. C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences, 102(27), 9703-9708. doi:10.1073/pnas.0504029102 es_ES
dc.description.references Wu, F., Chen, Y., Tian, X., Zhu, X., & Jin, W. (2017). Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Scientific Reports, 7(1). doi:10.1038/s41598-017-02233-x es_ES
dc.description.references Wu, S., Zhang, B., Keyhaninejad, N., Rodríguez, G. R., Kim, H. J., Chakrabarti, M., … van der Knaap, E. (2018). A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 9(1). doi:10.1038/s41467-018-07216-8 es_ES
dc.description.references Xia, R., Zhu, H., An, Y., Beers, E. P., & Liu, Z. (2012). Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 13(6), R47. doi:10.1186/gb-2012-13-6-r47 es_ES
dc.description.references Xu, Y.-X., Mao, J., Chen, W., Qian, T.-T., Liu, S.-C., Hao, W.-J., … Chen, L. (2016). Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiology and Biochemistry, 98, 46-56. doi:10.1016/j.plaphy.2015.11.014 es_ES
dc.description.references Yang, T., Wang, Y., Teotia, S., Zhang, Z., & Tang, G. (2018). The Making of Leaves: How Small RNA Networks Modulate Leaf Development. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00824 es_ES
dc.description.references Yifhar, T., Pekker, I., Peled, D., Friedlander, G., Pistunov, A., Sabban, M., … Eshed, Y. (2012). Failure of the Tomato Trans-Acting Short Interfering RNA Program to Regulate AUXIN RESPONSE FACTOR3 and ARF4 Underlies the Wiry Leaf Syndrome. The Plant Cell, 24(9), 3575-3589. doi:10.1105/tpc.112.100222 es_ES
dc.description.references Yu, C., Zhan, Y., Feng, X., Huang, Z.-A., & Sun, C. (2017). Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments. International Journal of Molecular Sciences, 18(12), 2719. doi:10.3390/ijms18122719 es_ES
dc.description.references Zhou, C., Han, L., Fu, C., Wen, J., Cheng, X., Nakashima, J., … Wang, Z.-Y. (2013). The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicagotruncatula. The Plant Cell, 25(12), 4845-4862. doi:10.1105/tpc.113.117788 es_ES
dc.description.references Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024 es_ES
dc.description.references Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem