dc.contributor.author |
Cervera-Seco, Luis
|
es_ES |
dc.contributor.author |
Marques, M.C.
|
es_ES |
dc.contributor.author |
Sanz-Carbonell, Alejandro
|
es_ES |
dc.contributor.author |
Márquez-Molins, Joan
|
es_ES |
dc.contributor.author |
CARBONELL, ALBERTO
|
es_ES |
dc.contributor.author |
DAROS ARNAU, JOSE ANTONIO
|
es_ES |
dc.contributor.author |
Gomez, Gustavo Germán
|
es_ES |
dc.date.accessioned |
2021-01-08T04:31:19Z |
|
dc.date.available |
2021-01-08T04:31:19Z |
|
dc.date.issued |
2019-11 |
es_ES |
dc.identifier.issn |
0032-0781 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/158398 |
|
dc.description.abstract |
[EN] Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts. |
es_ES |
dc.description.sponsorship |
J.M. was the recipient of a predoctoral contract from the ACIF program (ACIF-2017-114) of the Conselleria d¿Educació, Investigació, Cultura i Esport Generalitat Valenciana. A.C. was the recipient of a postdoctoral contract from the Ramón y Cajal program (RYC-2017-21648) from the Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union). The Spanish Ministry of Economy and Competitiveness [grant numbers AGL2016-79825-R, BIO2014-61826-EXP to G.G.]; the Ministerio de Ciencia, Innovacion y Universidades (MCIU, Spain), Agencia Estatal de Investigacion (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) [grant numbers BIO2017-83184-R to J.-A.D. and RTI2018-095118-A-100 to A.C.]. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Oxford University Press |
es_ES |
dc.relation.ispartof |
Plant and Cell Physiology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Cucurbitaceae |
es_ES |
dc.subject |
NcRNAs |
es_ES |
dc.subject |
Plant-environment interactions |
es_ES |
dc.subject |
Regulation of the stress response in crops |
es_ES |
dc.subject |
RNA silencing |
es_ES |
dc.subject |
Small RNAs in melon |
es_ES |
dc.title |
Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1093/pcp/pcz131 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//BIO2014-61826-EXP/ES/OPTIMIZACION PARA USO A ESCALA INDUSTRIAL DE UN SISTEMA PARA LA EXPRESION SELECTIVA DE COMPUESTOS HETEROLOGOS EN CLOROPLASTOS MEDIADO POR NON-CODING RNAS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//AGL2016-79825-R/ES/VALIDACION FUNCIONAL DE LAS REDES DE SNCRNAS QUE REGULAN LA REPUESTA A ESTRES EN MELON. ANALISIS DE SU POTENCIAL COMO FUENTE DE TOLERANCIA A CONDICIONES AMBIENTALES ADVERSAS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095118-A-I00/ES/COMPLEJOS ARGONAUTA1 DE PLANTAS: IDENTIFICACION DE SUS COMPONENTES PROTEICOS Y DE RNA, Y AJUSTE FINO DEL SILENCIAMIENTO MEDIANTE SU PROGRAMACION POR PEQUEÑOS RNAS ARTIFICIALES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes |
es_ES |
dc.description.bibliographicCitation |
Cervera-Seco, L.; Marques, M.; Sanz-Carbonell, A.; Márquez-Molins, J.; Carbonell, A.; Daros Arnau, JA.; Gomez, GG. (2019). Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. Plant and Cell Physiology. 60(11):2382-2393. https://doi.org/10.1093/pcp/pcz131 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1093/pcp/pcz131 |
es_ES |
dc.description.upvformatpinicio |
2382 |
es_ES |
dc.description.upvformatpfin |
2393 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
60 |
es_ES |
dc.description.issue |
11 |
es_ES |
dc.identifier.pmid |
31290971 |
es_ES |
dc.relation.pasarela |
S\406644 |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Adenot, X., Elmayan, T., Lauressergues, D., Boutet, S., Bouché, N., Gasciolli, V., & Vaucheret, H. (2006). DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Current Biology, 16(9), 927-932. doi:10.1016/j.cub.2006.03.035 |
es_ES |
dc.description.references |
Allen, E., & Howell, M. D. (2010). miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Seminars in Cell & Developmental Biology, 21(8), 798-804. doi:10.1016/j.semcdb.2010.03.008 |
es_ES |
dc.description.references |
Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants. Cell, 121(2), 207-221. doi:10.1016/j.cell.2005.04.004 |
es_ES |
dc.description.references |
Arif, M. A., Fattash, I., Ma, Z., Cho, S. H., Beike, A. K., Reski, R., … Frank, W. (2012). DICER-LIKE3 Activity in Physcomitrella patens DICER-LIKE4 Mutants Causes Severe Developmental Dysfunction and Sterility. Molecular Plant, 5(6), 1281-1294. doi:10.1093/mp/sss036 |
es_ES |
dc.description.references |
Axtell, M. J. (2013). Classification and Comparison of Small RNAs from Plants. Annual Review of Plant Biology, 64(1), 137-159. doi:10.1146/annurev-arplant-050312-120043 |
es_ES |
dc.description.references |
Axtell, M. J., Jan, C., Rajagopalan, R., & Bartel, D. P. (2006). A Two-Hit Trigger for siRNA Biogenesis in Plants. Cell, 127(3), 565-577. doi:10.1016/j.cell.2006.09.032 |
es_ES |
dc.description.references |
Banerjee, S., Sirohi, A., Ansari, A. A., & Gill, S. S. (2017). Role of small RNAs in abiotic stress responses in plants. Plant Gene, 11, 180-189. doi:10.1016/j.plgene.2017.04.005 |
es_ES |
dc.description.references |
Bologna, N. G., & Voinnet, O. (2014). The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs inArabidopsis. Annual Review of Plant Biology, 65(1), 473-503. doi:10.1146/annurev-arplant-050213-035728 |
es_ES |
dc.description.references |
Borges, F., & Martienssen, R. A. (2015). The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. doi:10.1038/nrm4085 |
es_ES |
dc.description.references |
Bustamante, A., Marques, M. C., Sanz-Carbonell, A., Mulet, J. M., & Gomez, G. (2018). Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports, 8(1). doi:10.1038/s41598-018-34012-7 |
es_ES |
dc.description.references |
Cabrera, J., Barcala, M., García, A., Rio-Machín, A., Medina, C., Jaubert-Possamai, S., … Escobar, C. (2015). Differentially expressed small RNAs in Arabidopsis galls formed byMeloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytologist, 209(4), 1625-1640. doi:10.1111/nph.13735 |
es_ES |
dc.description.references |
Calanca, P. P. (2016). Effects of Abiotic Stress in Crop Production. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, 165-180. doi:10.1007/978-3-319-32059-5_8 |
es_ES |
dc.description.references |
Carbonell, A. (2017). Plant ARGONAUTEs: Features, Functions, and Unknowns. Plant Argonaute Proteins, 1-21. doi:10.1007/978-1-4939-7165-7_1 |
es_ES |
dc.description.references |
Carbonell, A., & Daròs, J.-A. (2017). Artificial microRNAs and synthetictrans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology, 18(5), 746-753. doi:10.1111/mpp.12529 |
es_ES |
dc.description.references |
Chitwood, D. H., Nogueira, F. T. S., Howell, M. D., Montgomery, T. A., Carrington, J. C., & Timmermans, M. C. P. (2009). Pattern formation via small RNA mobility. Genes & Development, 23(5), 549-554. doi:10.1101/gad.1770009 |
es_ES |
dc.description.references |
Clepet, C., Joobeur, T., Zheng, Y., Jublot, D., Huang, M., Truniger, V., … Fei, Z. (2011). Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-252 |
es_ES |
dc.description.references |
Czimmerer, Z., Hulvely, J., Simandi, Z., Varallyay, E., Havelda, Z., Szabo, E., … Balint, B. L. (2013). A Versatile Method to Design Stem-Loop Primer-Based Quantitative PCR Assays for Detecting Small Regulatory RNA Molecules. PLoS ONE, 8(1), e55168. doi:10.1371/journal.pone.0055168 |
es_ES |
dc.description.references |
D’Ario, M., Griffiths-Jones, S., & Kim, M. (2017). Small RNAs: Big Impact on Plant Development. Trends in Plant Science, 22(12), 1056-1068. doi:10.1016/j.tplants.2017.09.009 |
es_ES |
dc.description.references |
Dai, X., Zhuang, Z., & Zhao, P. X. (2018). psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research, 46(W1), W49-W54. doi:10.1093/nar/gky316 |
es_ES |
dc.description.references |
De Felippes, F. F., Marchais, A., Sarazin, A., Oberlin, S., & Voinnet, O. (2017). A single miR390 targeting event is sufficient for triggering TAS3-tasiRNA biogenesis in Arabidopsis. Nucleic Acids Research, 45(9), 5539-5554. doi:10.1093/nar/gkx119 |
es_ES |
dc.description.references |
Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., & Carrington, J. C. (2006). Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA Affects Developmental Timing and Patterning in Arabidopsis. Current Biology, 16(9), 939-944. doi:10.1016/j.cub.2006.03.065 |
es_ES |
dc.description.references |
Fei, Q., Xia, R., & Meyers, B. C. (2013). Phased, Secondary, Small Interfering RNAs in Posttranscriptional Regulatory Networks. The Plant Cell, 25(7), 2400-2415. doi:10.1105/tpc.113.114652 |
es_ES |
dc.description.references |
Fukunaga, R., & Doudna, J. A. (2009). dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. The EMBO Journal, 28(5), 545-555. doi:10.1038/emboj.2009.2 |
es_ES |
dc.description.references |
Garcia, D., Collier, S. A., Byrne, M. E., & Martienssen, R. A. (2006). Specification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway. Current Biology, 16(9), 933-938. doi:10.1016/j.cub.2006.03.064 |
es_ES |
dc.description.references |
Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 |
es_ES |
dc.description.references |
Gómez, G., & Pallás, V. (2007). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. The Plant Journal, 51(6), 1041-1049. doi:10.1111/j.1365-313x.2007.03203.x |
es_ES |
dc.description.references |
González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289 |
es_ES |
dc.description.references |
Gonzalez-Ibeas, D., Blanca, J., Donaire, L., Saladié, M., Mascarell-Creus, A., Cano-Delgado, A., … Aranda, M. A. (2011). Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-393 |
es_ES |
dc.description.references |
Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10(5), 453-460. doi:10.1016/j.pbi.2007.08.014 |
es_ES |
dc.description.references |
He, F., Xu, C., Fu, X., Shen, Y., Guo, L., Leng, M., & Luo, K. (2018). The MicroRNA390/TRANS-ACTING SHORT INTERFERING RNA3 Module Mediates Lateral Root Growth under Salt Stress via the Auxin Pathway. Plant Physiology, 177(2), 775-791. doi:10.1104/pp.17.01559 |
es_ES |
dc.description.references |
Heisel, S. E., Zhang, Y., Allen, E., Guo, L., Reynolds, T. L., Yang, X., … Roberts, J. K. (2008). Characterization of Unique Small RNA Populations from Rice Grain. PLoS ONE, 3(8), e2871. doi:10.1371/journal.pone.0002871 |
es_ES |
dc.description.references |
Hou, J., Zhou, Y.-F., Gao, L.-Y., Wang, Y.-L., Yang, L.-M., Zhu, H.-Y., … Hu, J.-B. (2018). Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01577 |
es_ES |
dc.description.references |
Howell, M. D., Fahlgren, N., Chapman, E. J., Cumbie, J. S., Sullivan, C. M., Givan, S. A., … Carrington, J. C. (2007). Genome-Wide Analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 Pathway in Arabidopsis Reveals Dependency on miRNA- and tasiRNA-Directed Targeting. The Plant Cell, 19(3), 926-942. doi:10.1105/tpc.107.050062 |
es_ES |
dc.description.references |
Hsieh, L.-C., Lin, S.-I., Shih, A. C.-C., Chen, J.-W., Lin, W.-Y., Tseng, C.-Y., … Chiou, T.-J. (2009). Uncovering Small RNA-Mediated Responses to Phosphate Deficiency in Arabidopsis by Deep Sequencing. Plant Physiology, 151(4), 2120-2132. doi:10.1104/pp.109.147280 |
es_ES |
dc.description.references |
Hu, W., Zuo, J., Hou, X., Yan, Y., Wei, Y., Liu, J., … Jin, Z. (2015). The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00742 |
es_ES |
dc.description.references |
Islam, W., Qasim, M., Noman, A., Adnan, M., Tayyab, M., Farooq, T. H., … Wang, L. (2018). Plant microRNAs: Front line players against invading pathogens. Microbial Pathogenesis, 118, 9-17. doi:10.1016/j.micpath.2018.03.008 |
es_ES |
dc.description.references |
Jain, M., & Khurana, J. P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Journal, 276(11), 3148-3162. doi:10.1111/j.1742-4658.2009.07033.x |
es_ES |
dc.description.references |
Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G.-L., Walbot, V., … Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Research, 19(8), 1429-1440. doi:10.1101/gr.089854.108 |
es_ES |
dc.description.references |
Katiyar, A., Smita, S., Muthusamy, S. K., Chinnusamy, V., Pandey, D. M., & Bansal, K. C. (2015). Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00506 |
es_ES |
dc.description.references |
Kumar, R. (2014). Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Applied Biochemistry and Biotechnology, 174(1), 93-115. doi:10.1007/s12010-014-0914-2 |
es_ES |
dc.description.references |
Kumar, V., Khare, T., Shriram, V., & Wani, S. H. (2017). Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Reports, 37(1), 61-75. doi:10.1007/s00299-017-2210-4 |
es_ES |
dc.description.references |
Li, F., Pignatta, D., Bendix, C., Brunkard, J. O., Cohn, M. M., Tung, J., … Baker, B. (2012). MicroRNA regulation of plant innate immune receptors. Proceedings of the National Academy of Sciences, 109(5), 1790-1795. doi:10.1073/pnas.1118282109 |
es_ES |
dc.description.references |
Li, S., Castillo-González, C., Yu, B., & Zhang, X. (2017). The functions of plant small RNAs in development and in stress responses. The Plant Journal, 90(4), 654-670. doi:10.1111/tpj.13444 |
es_ES |
dc.description.references |
Li, X., Lei, M., Yan, Z., Wang, Q., Chen, A., Sun, J., … Wang, Y. (2013). The REL3-mediatedTAS3ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation inLotus japonicus. New Phytologist, 201(2), 531-544. doi:10.1111/nph.12550 |
es_ES |
dc.description.references |
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 |
es_ES |
dc.description.references |
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). doi:10.1186/s13059-014-0550-8 |
es_ES |
dc.description.references |
Luo, Q.-J., Mittal, A., Jia, F., & Rock, C. D. (2011). An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Molecular Biology, 80(1), 117-129. doi:10.1007/s11103-011-9778-9 |
es_ES |
dc.description.references |
Marin, E., Jouannet, V., Herz, A., Lokerse, A. S., Weijers, D., Vaucheret, H., … Maizel, A. (2010). miR390, Arabidopsis TAS3 tasiRNAs, and Their AUXIN RESPONSE FACTOR Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. The Plant Cell, 22(4), 1104-1117. doi:10.1105/tpc.109.072553 |
es_ES |
dc.description.references |
Martinez, G., & Köhler, C. (2017). Role of small RNAs in epigenetic reprogramming during plant sexual reproduction. Current Opinion in Plant Biology, 36, 22-28. doi:10.1016/j.pbi.2016.12.006 |
es_ES |
dc.description.references |
Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., … Qi, Y. (2008). Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034 |
es_ES |
dc.description.references |
Moldovan, D., Spriggs, A., Yang, J., Pogson, B. J., Dennis, E. S., & Wilson, I. W. (2009). Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. Journal of Experimental Botany, 61(1), 165-177. doi:10.1093/jxb/erp296 |
es_ES |
dc.description.references |
Montgomery, T. A., Howell, M. D., Cuperus, J. T., Li, D., Hansen, J. E., Alexander, A. L., … Carrington, J. C. (2008). Specificity of ARGONAUTE7-miR390 Interaction and Dual Functionality in TAS3 Trans-Acting siRNA Formation. Cell, 133(1), 128-141. doi:10.1016/j.cell.2008.02.033 |
es_ES |
dc.description.references |
Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., … Carrington, J. C. (2008). AGO1-miR173 complex initiates phased siRNA formation in plants. Proceedings of the National Academy of Sciences, 105(51), 20055-20062. doi:10.1073/pnas.0810241105 |
es_ES |
dc.description.references |
Ruggieri, V., Alexiou, K. G., Morata, J., Argyris, J., Pujol, M., Yano, R., … Garcia-Mas, J. (2018). An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Scientific Reports, 8(1). doi:10.1038/s41598-018-26416-2 |
es_ES |
dc.description.references |
Sanz-Carbonell, A., Marques, M. C., Bustamante, A., Fares, M. A., Rodrigo, G., & Gomez, G. (2019). Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1679-0 |
es_ES |
dc.description.references |
SHEN, C., WANG, S., ZHANG, S., XU, Y., QIAN, Q., QI, Y., & JIANG, D. A. (2012). OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativaL.). Plant, Cell & Environment, 36(3), 607-620. doi:10.1111/pce.12001 |
es_ES |
dc.description.references |
Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S., & Wani, S. H. (2016). MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00817 |
es_ES |
dc.description.references |
Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J.-K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12(7), 301-309. doi:10.1016/j.tplants.2007.05.001 |
es_ES |
dc.description.references |
Sunkar, R., Li, Y.-F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196-203. doi:10.1016/j.tplants.2012.01.010 |
es_ES |
dc.description.references |
Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043 |
es_ES |
dc.description.references |
Talmor-Neiman, M., Stav, R., Klipcan, L., Buxdorf, K., Baulcombe, D. C., & Arazi, T. (2006). Identification oftrans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. The Plant Journal, 48(4), 511-521. doi:10.1111/j.1365-313x.2006.02895.x |
es_ES |
dc.description.references |
Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., … Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Functional & Integrative Genomics, 10(4), 533-546. doi:10.1007/s10142-010-0174-3 |
es_ES |
dc.description.references |
Wang, S., Zhang, S., Sun, C., Xu, Y., Chen, Y., Yu, C., … Qi, Y. (2013). Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytologist, 201(1), 91-103. doi:10.1111/nph.12499 |
es_ES |
dc.description.references |
Williams, L., Carles, C. C., Osmont, K. S., & Fletcher, J. C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences, 102(27), 9703-9708. doi:10.1073/pnas.0504029102 |
es_ES |
dc.description.references |
Wu, F., Chen, Y., Tian, X., Zhu, X., & Jin, W. (2017). Genome-wide identification and characterization of phased small interfering RNA genes in response to Botrytis cinerea infection in Solanum lycopersicum. Scientific Reports, 7(1). doi:10.1038/s41598-017-02233-x |
es_ES |
dc.description.references |
Wu, S., Zhang, B., Keyhaninejad, N., Rodríguez, G. R., Kim, H. J., Chakrabarti, M., … van der Knaap, E. (2018). A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 9(1). doi:10.1038/s41467-018-07216-8 |
es_ES |
dc.description.references |
Xia, R., Zhu, H., An, Y., Beers, E. P., & Liu, Z. (2012). Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 13(6), R47. doi:10.1186/gb-2012-13-6-r47 |
es_ES |
dc.description.references |
Xu, Y.-X., Mao, J., Chen, W., Qian, T.-T., Liu, S.-C., Hao, W.-J., … Chen, L. (2016). Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiology and Biochemistry, 98, 46-56. doi:10.1016/j.plaphy.2015.11.014 |
es_ES |
dc.description.references |
Yang, T., Wang, Y., Teotia, S., Zhang, Z., & Tang, G. (2018). The Making of Leaves: How Small RNA Networks Modulate Leaf Development. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00824 |
es_ES |
dc.description.references |
Yifhar, T., Pekker, I., Peled, D., Friedlander, G., Pistunov, A., Sabban, M., … Eshed, Y. (2012). Failure of the Tomato Trans-Acting Short Interfering RNA Program to Regulate AUXIN RESPONSE FACTOR3 and ARF4 Underlies the Wiry Leaf Syndrome. The Plant Cell, 24(9), 3575-3589. doi:10.1105/tpc.112.100222 |
es_ES |
dc.description.references |
Yu, C., Zhan, Y., Feng, X., Huang, Z.-A., & Sun, C. (2017). Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments. International Journal of Molecular Sciences, 18(12), 2719. doi:10.3390/ijms18122719 |
es_ES |
dc.description.references |
Zhou, C., Han, L., Fu, C., Wen, J., Cheng, X., Nakashima, J., … Wang, Z.-Y. (2013). The Trans-Acting Short Interfering RNA3 Pathway and NO APICAL MERISTEM Antagonistically Regulate Leaf Margin Development and Lateral Organ Separation, as Revealed by Analysis of an argonaute7/lobed leaflet1 Mutant in Medicagotruncatula. The Plant Cell, 25(12), 4845-4862. doi:10.1105/tpc.113.117788 |
es_ES |
dc.description.references |
Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.-H., Liou, L. W., … Zhang, X. (2011). Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell, 145(2), 242-256. doi:10.1016/j.cell.2011.03.024 |
es_ES |
dc.description.references |
Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167(2), 313-324. doi:10.1016/j.cell.2016.08.029 |
es_ES |