Mostrar el registro sencillo del ítem
dc.contributor.author | López-Gresa, María Pilar | es_ES |
dc.contributor.author | Payá, C. | es_ES |
dc.contributor.author | Rodrigo Bravo, Ismael | es_ES |
dc.contributor.author | Belles Albert, José Mª | es_ES |
dc.contributor.author | Barceló-Cerdá, Susana | es_ES |
dc.contributor.author | Hae Choi, Young | es_ES |
dc.contributor.author | Verpoorte, Robert | es_ES |
dc.contributor.author | Lisón, Purificación | es_ES |
dc.date.accessioned | 2021-01-09T04:32:04Z | |
dc.date.available | 2021-01-09T04:32:04Z | |
dc.date.issued | 2019-05-14 | es_ES |
dc.identifier.issn | 1999-4915 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158502 | |
dc.description.abstract | [EN] Benzothiadiazole (BTH) is a functional analogue of the phytohormone salycilic acid (SA) involved in the plant immune response. NahG tomato plants are unable to accumulate SA, which makes them hypersusceptible to several pathogens. Treatments with BTH increase the resistance to bacterial, fungal, viroid, or viral infections. In this study, metabolic alterations in BTH-treated Money Maker and NahG tomato plants infected by citrus exocortis viroid (CEVd) were investigated by nuclear magnetic resonance spectroscopy. Using multivariate data analysis, we have identified defence metabolites induced after viroid infection and BTH-treatment. Glycosylated phenolic compounds include gentisic and ferulic acid accumulated in CEVd-infected tomato plants, as well as phenylalanine, tyrosine, aspartate, glutamate, and asparagine. Besides, an increase of -aminobutyric acid (GABA), glutamine, adenosine, and trigonelline, contributed to a clear discrimination between the metabolome of BTH-treated tomato leaves and their corresponding controls. Among them, GABA was the only metabolite significantly accumulated in both genotypes after the chemical treatment. In view of these results, the addition of GABA was performed on tomato plants infected by CEVd, and a reversion of the NahG hypersusceptibility to CEVd was observed, indicating that GABA could regulate the resistance to CEVd induced by BTH. | es_ES |
dc.description.sponsorship | This research was funded by Direccion General de Programas y Transferencia de Conocimiento, from the Spanish Ministry of Science and Innovation, Grant BIO2012-33419. MP. Lopez-Gresa was the recipient of a postdoctoral fellowship JC2008-00432 Spanish Ministry of Science and Innovation | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Viruses | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | NMR | es_ES |
dc.subject | Metabolomics | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Viroid | es_ES |
dc.subject | BTH | es_ES |
dc.subject | Defence | es_ES |
dc.subject | NahG plants | es_ES |
dc.subject | GABA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/v11050437 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JC2008-00432/ES/JC2008-00432/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2012-33419/ES/CARACTERIZACION DE GENES Y METABOLITOS IMPLICADOS EN LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | López-Gresa, MP.; Payá, C.; Rodrigo Bravo, I.; Belles Albert, JM.; Barceló-Cerdá, S.; Hae Choi, Y.; Verpoorte, R.... (2019). Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid. Viruses. 11(5):1-15. https://doi.org/10.3390/v11050437 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/v11050437 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.pmid | 31091764 | es_ES |
dc.identifier.pmcid | PMC6563216 | es_ES |
dc.relation.pasarela | S\388820 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Mou, Z., Fan, W., & Dong, X. (2003). Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113(7), 935-944. doi:10.1016/s0092-8674(03)00429-x | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 | es_ES |
dc.description.references | Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 | es_ES |
dc.description.references | Brading, P. A., Hammond-Kosack, K. E., Parr, A., & Jones, J. D. G. (2000). Salicylic acid is not required forCf-2- andCf-9-dependent resistance of tomato toCladosporium fulvum. The Plant Journal, 23(3), 305-318. doi:10.1046/j.1365-313x.2000.00778.x | es_ES |
dc.description.references | López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938 | es_ES |
dc.description.references | Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., … Ryals, J. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10(1), 61-70. doi:10.1046/j.1365-313x.1996.10010061.x | es_ES |
dc.description.references | Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., … Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8(4), 629-643. doi:10.1105/tpc.8.4.629 | es_ES |
dc.description.references | Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., … Miller, S. A. (2001). Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 85(5), 481-488. doi:10.1094/pdis.2001.85.5.481 | es_ES |
dc.description.references | Li, X., Bi, Y., Wang, J., Dong, B., Li, H., Gong, D., … Shang, Q. (2015). BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 120, 179-193. doi:10.1016/j.jprot.2015.03.006 | es_ES |
dc.description.references | Hien Dao, T. T., Puig, R. C., Kim, H. K., Erkelens, C., Lefeber, A. W. M., Linthorst, H. J. M., … Verpoorte, R. (2009). Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiology and Biochemistry, 47(2), 146-152. doi:10.1016/j.plaphy.2008.10.001 | es_ES |
dc.description.references | Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106 | es_ES |
dc.description.references | Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses. Plant Physiology, 117(4), 1333-1339. doi:10.1104/pp.117.4.1333 | es_ES |
dc.description.references | Iriti, M., Rossoni, M., Borgo, M., & Faoro, F. (2004). Benzothiadiazole Enhances Resveratrol and Anthocyanin Biosynthesis in Grapevine, Meanwhile Improving Resistance toBotrytis cinerea. Journal of Agricultural and Food Chemistry, 52(14), 4406-4413. doi:10.1021/jf049487b | es_ES |
dc.description.references | Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3 | es_ES |
dc.description.references | López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179 | es_ES |
dc.description.references | López-Gresa, M. P., Lisón, P., Kim, H. K., Choi, Y. H., Verpoorte, R., Rodrigo, I., … Bellés, J. M. (2012). Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. Journal of Plant Physiology, 169(16), 1586-1596. doi:10.1016/j.jplph.2012.05.021 | es_ES |
dc.description.references | Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193-194, 130-135. doi:10.1016/j.plantsci.2012.06.001 | es_ES |
dc.description.references | Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., & Yu, T. (2014). γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chemistry, 159, 29-37. doi:10.1016/j.foodchem.2014.03.011 | es_ES |
dc.description.references | Bolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions®, 22(5), 487-497. doi:10.1094/mpmi-22-5-0487 | es_ES |
dc.description.references | Seifi, H. S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficientsitiensmutant of tomato leads to resistance againstBotrytis cinerea. New Phytologist, 199(2), 490-504. doi:10.1111/nph.12283 | es_ES |
dc.description.references | Oldroyd, G. E. D., & Staskawicz, B. J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences, 95(17), 10300-10305. doi:10.1073/pnas.95.17.10300 | es_ES |
dc.description.references | Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131-142. doi:10.1046/j.1365-313x.2000.00774.x | es_ES |
dc.description.references | Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008 | es_ES |
dc.description.references | Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 | es_ES |
dc.description.references | Kinnersley, A. M., & Turano, F. J. (2000). Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Critical Reviews in Plant Sciences, 19(6), 479-509. doi:10.1080/07352680091139277 | es_ES |
dc.description.references | Roberts, M. R. (2007). Does GABA Act as a Signal in Plants? Hints from Molecular Studies. Plant Signaling & Behavior, 2(5), 408-409. doi:10.4161/psb.2.5.4335 | es_ES |
dc.description.references | Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., & Muto, S. (1998). Salicylic Acid Induces Extracellular Superoxide Generation Followed by an Increase in Cytosolic Calcium Ion in Tobacco Suspension Culture: The Earliest Events in Salicylic Acid Signal Transduction. Plant and Cell Physiology, 39(7), 721-730. doi:10.1093/oxfordjournals.pcp.a029426 | es_ES |
dc.description.references | Ge, Y., Duan, B., Li, C., Tang, Q., Li, X., Wei, M., … Li, J. (2018). γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Scientia Horticulturae, 240, 303-309. doi:10.1016/j.scienta.2018.06.044 | es_ES |
dc.description.references | Aghdam, M. S., Kakavand, F., Rabiei, V., Zaare-Nahandi, F., & Razavi, F. (2019). γ-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation. Scientia Horticulturae, 246, 812-817. doi:10.1016/j.scienta.2018.11.064 | es_ES |
dc.description.references | Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends in Plant Science, 21(10), 811-813. doi:10.1016/j.tplants.2016.08.001 | es_ES |