- -

Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Payá, C. es_ES
dc.contributor.author Rodrigo Bravo, Ismael es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author Barceló-Cerdá, Susana es_ES
dc.contributor.author Hae Choi, Young es_ES
dc.contributor.author Verpoorte, Robert es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.date.accessioned 2021-01-09T04:32:04Z
dc.date.available 2021-01-09T04:32:04Z
dc.date.issued 2019-05-14 es_ES
dc.identifier.issn 1999-4915 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158502
dc.description.abstract [EN] Benzothiadiazole (BTH) is a functional analogue of the phytohormone salycilic acid (SA) involved in the plant immune response. NahG tomato plants are unable to accumulate SA, which makes them hypersusceptible to several pathogens. Treatments with BTH increase the resistance to bacterial, fungal, viroid, or viral infections. In this study, metabolic alterations in BTH-treated Money Maker and NahG tomato plants infected by citrus exocortis viroid (CEVd) were investigated by nuclear magnetic resonance spectroscopy. Using multivariate data analysis, we have identified defence metabolites induced after viroid infection and BTH-treatment. Glycosylated phenolic compounds include gentisic and ferulic acid accumulated in CEVd-infected tomato plants, as well as phenylalanine, tyrosine, aspartate, glutamate, and asparagine. Besides, an increase of -aminobutyric acid (GABA), glutamine, adenosine, and trigonelline, contributed to a clear discrimination between the metabolome of BTH-treated tomato leaves and their corresponding controls. Among them, GABA was the only metabolite significantly accumulated in both genotypes after the chemical treatment. In view of these results, the addition of GABA was performed on tomato plants infected by CEVd, and a reversion of the NahG hypersusceptibility to CEVd was observed, indicating that GABA could regulate the resistance to CEVd induced by BTH. es_ES
dc.description.sponsorship This research was funded by Direccion General de Programas y Transferencia de Conocimiento, from the Spanish Ministry of Science and Innovation, Grant BIO2012-33419. MP. Lopez-Gresa was the recipient of a postdoctoral fellowship JC2008-00432 Spanish Ministry of Science and Innovation es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Viruses es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject NMR es_ES
dc.subject Metabolomics es_ES
dc.subject Tomato es_ES
dc.subject Viroid es_ES
dc.subject BTH es_ES
dc.subject Defence es_ES
dc.subject NahG plants es_ES
dc.subject GABA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/v11050437 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JC2008-00432/ES/JC2008-00432/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2012-33419/ES/CARACTERIZACION DE GENES Y METABOLITOS IMPLICADOS EN LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation López-Gresa, MP.; Payá, C.; Rodrigo Bravo, I.; Belles Albert, JM.; Barceló-Cerdá, S.; Hae Choi, Y.; Verpoorte, R.... (2019). Effect of Benzothiadiazole on the metabolome of tomato plants infected by Citrus Exocortis Viroid. Viruses. 11(5):1-15. https://doi.org/10.3390/v11050437 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/v11050437 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 31091764 es_ES
dc.identifier.pmcid PMC6563216 es_ES
dc.relation.pasarela S\388820 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Mou, Z., Fan, W., & Dong, X. (2003). Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113(7), 935-944. doi:10.1016/s0092-8674(03)00429-x es_ES
dc.description.references Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8 es_ES
dc.description.references Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227 es_ES
dc.description.references Brading, P. A., Hammond-Kosack, K. E., Parr, A., & Jones, J. D. G. (2000). Salicylic acid is not required forCf-2- andCf-9-dependent resistance of tomato toCladosporium fulvum. The Plant Journal, 23(3), 305-318. doi:10.1046/j.1365-313x.2000.00778.x es_ES
dc.description.references López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938 es_ES
dc.description.references Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., … Ryals, J. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10(1), 61-70. doi:10.1046/j.1365-313x.1996.10010061.x es_ES
dc.description.references Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., … Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8(4), 629-643. doi:10.1105/tpc.8.4.629 es_ES
dc.description.references Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., … Miller, S. A. (2001). Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 85(5), 481-488. doi:10.1094/pdis.2001.85.5.481 es_ES
dc.description.references Li, X., Bi, Y., Wang, J., Dong, B., Li, H., Gong, D., … Shang, Q. (2015). BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 120, 179-193. doi:10.1016/j.jprot.2015.03.006 es_ES
dc.description.references Hien Dao, T. T., Puig, R. C., Kim, H. K., Erkelens, C., Lefeber, A. W. M., Linthorst, H. J. M., … Verpoorte, R. (2009). Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiology and Biochemistry, 47(2), 146-152. doi:10.1016/j.plaphy.2008.10.001 es_ES
dc.description.references Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106 es_ES
dc.description.references Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses. Plant Physiology, 117(4), 1333-1339. doi:10.1104/pp.117.4.1333 es_ES
dc.description.references Iriti, M., Rossoni, M., Borgo, M., & Faoro, F. (2004). Benzothiadiazole Enhances Resveratrol and Anthocyanin Biosynthesis in Grapevine, Meanwhile Improving Resistance toBotrytis cinerea. Journal of Agricultural and Food Chemistry, 52(14), 4406-4413. doi:10.1021/jf049487b es_ES
dc.description.references Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3 es_ES
dc.description.references López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179 es_ES
dc.description.references López-Gresa, M. P., Lisón, P., Kim, H. K., Choi, Y. H., Verpoorte, R., Rodrigo, I., … Bellés, J. M. (2012). Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. Journal of Plant Physiology, 169(16), 1586-1596. doi:10.1016/j.jplph.2012.05.021 es_ES
dc.description.references Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193-194, 130-135. doi:10.1016/j.plantsci.2012.06.001 es_ES
dc.description.references Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., & Yu, T. (2014). γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chemistry, 159, 29-37. doi:10.1016/j.foodchem.2014.03.011 es_ES
dc.description.references Bolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions®, 22(5), 487-497. doi:10.1094/mpmi-22-5-0487 es_ES
dc.description.references Seifi, H. S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficientsitiensmutant of tomato leads to resistance againstBotrytis cinerea. New Phytologist, 199(2), 490-504. doi:10.1111/nph.12283 es_ES
dc.description.references Oldroyd, G. E. D., & Staskawicz, B. J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences, 95(17), 10300-10305. doi:10.1073/pnas.95.17.10300 es_ES
dc.description.references Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131-142. doi:10.1046/j.1365-313x.2000.00774.x es_ES
dc.description.references Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008 es_ES
dc.description.references Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014 es_ES
dc.description.references Kinnersley, A. M., & Turano, F. J. (2000). Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Critical Reviews in Plant Sciences, 19(6), 479-509. doi:10.1080/07352680091139277 es_ES
dc.description.references Roberts, M. R. (2007). Does GABA Act as a Signal in Plants? Hints from Molecular Studies. Plant Signaling & Behavior, 2(5), 408-409. doi:10.4161/psb.2.5.4335 es_ES
dc.description.references Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., & Muto, S. (1998). Salicylic Acid Induces Extracellular Superoxide Generation Followed by an Increase in Cytosolic Calcium Ion in Tobacco Suspension Culture: The Earliest Events in Salicylic Acid Signal Transduction. Plant and Cell Physiology, 39(7), 721-730. doi:10.1093/oxfordjournals.pcp.a029426 es_ES
dc.description.references Ge, Y., Duan, B., Li, C., Tang, Q., Li, X., Wei, M., … Li, J. (2018). γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Scientia Horticulturae, 240, 303-309. doi:10.1016/j.scienta.2018.06.044 es_ES
dc.description.references Aghdam, M. S., Kakavand, F., Rabiei, V., Zaare-Nahandi, F., & Razavi, F. (2019). γ-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation. Scientia Horticulturae, 246, 812-817. doi:10.1016/j.scienta.2018.11.064 es_ES
dc.description.references Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends in Plant Science, 21(10), 811-813. doi:10.1016/j.tplants.2016.08.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem