Mou, Z., Fan, W., & Dong, X. (2003). Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113(7), 935-944. doi:10.1016/s0092-8674(03)00429-x
Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8
Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227
[+]
Mou, Z., Fan, W., & Dong, X. (2003). Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 113(7), 935-944. doi:10.1016/s0092-8674(03)00429-x
Bellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8
Bellés, J. M., Garro, R., Fayos, J., Navarro, P., Primo, J., & Conejero, V. (1999). Gentisic Acid As a Pathogen-Inducible Signal, Additional to Salicylic Acid for Activation of Plant Defenses in Tomato. Molecular Plant-Microbe Interactions®, 12(3), 227-235. doi:10.1094/mpmi.1999.12.3.227
Brading, P. A., Hammond-Kosack, K. E., Parr, A., & Jones, J. D. G. (2000). Salicylic acid is not required forCf-2- andCf-9-dependent resistance of tomato toCladosporium fulvum. The Plant Journal, 23(3), 305-318. doi:10.1046/j.1365-313x.2000.00778.x
López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938
Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., … Ryals, J. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal, 10(1), 61-70. doi:10.1046/j.1365-313x.1996.10010061.x
Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., … Ryals, J. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. The Plant Cell, 8(4), 629-643. doi:10.1105/tpc.8.4.629
Louws, F. J., Wilson, M., Campbell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., … Miller, S. A. (2001). Field Control of Bacterial Spot and Bacterial Speck of Tomato Using a Plant Activator. Plant Disease, 85(5), 481-488. doi:10.1094/pdis.2001.85.5.481
Li, X., Bi, Y., Wang, J., Dong, B., Li, H., Gong, D., … Shang, Q. (2015). BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening. Journal of Proteomics, 120, 179-193. doi:10.1016/j.jprot.2015.03.006
Hien Dao, T. T., Puig, R. C., Kim, H. K., Erkelens, C., Lefeber, A. W. M., Linthorst, H. J. M., … Verpoorte, R. (2009). Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiology and Biochemistry, 47(2), 146-152. doi:10.1016/j.plaphy.2008.10.001
Vogt, T. (2010). Phenylpropanoid Biosynthesis. Molecular Plant, 3(1), 2-20. doi:10.1093/mp/ssp106
Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A Benzothiadiazole Primes Parsley Cells for Augmented Elicitation of Defense Responses. Plant Physiology, 117(4), 1333-1339. doi:10.1104/pp.117.4.1333
Iriti, M., Rossoni, M., Borgo, M., & Faoro, F. (2004). Benzothiadiazole Enhances Resveratrol and Anthocyanin Biosynthesis in Grapevine, Meanwhile Improving Resistance toBotrytis cinerea. Journal of Agricultural and Food Chemistry, 52(14), 4406-4413. doi:10.1021/jf049487b
Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6(1), 3-14. doi:10.1007/s11101-006-9031-3
López-Gresa, M. P., Maltese, F., Bellés, J. M., Conejero, V., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2009). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21(1), 89-94. doi:10.1002/pca.1179
López-Gresa, M. P., Lisón, P., Kim, H. K., Choi, Y. H., Verpoorte, R., Rodrigo, I., … Bellés, J. M. (2012). Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. Journal of Plant Physiology, 169(16), 1586-1596. doi:10.1016/j.jplph.2012.05.021
Shelp, B. J., Bozzo, G. G., Trobacher, C. P., Zarei, A., Deyman, K. L., & Brikis, C. J. (2012). Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science, 193-194, 130-135. doi:10.1016/j.plantsci.2012.06.001
Yu, C., Zeng, L., Sheng, K., Chen, F., Zhou, T., Zheng, X., & Yu, T. (2014). γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chemistry, 159, 29-37. doi:10.1016/j.foodchem.2014.03.011
Bolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions®, 22(5), 487-497. doi:10.1094/mpmi-22-5-0487
Seifi, H. S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., & Höfte, M. (2013). Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficientsitiensmutant of tomato leads to resistance againstBotrytis cinerea. New Phytologist, 199(2), 490-504. doi:10.1111/nph.12283
Oldroyd, G. E. D., & Staskawicz, B. J. (1998). Genetically engineered broad-spectrum disease resistance in tomato. Proceedings of the National Academy of Sciences, 95(17), 10300-10305. doi:10.1073/pnas.95.17.10300
Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131-142. doi:10.1046/j.1365-313x.2000.00774.x
Bellés, J. M., López-Gresa, M. P., Fayos, J., Pallás, V., Rodrigo, I., & Conejero, V. (2008). Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Science, 174(5), 524-533. doi:10.1016/j.plantsci.2008.02.008
Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014
Kinnersley, A. M., & Turano, F. J. (2000). Gamma Aminobutyric Acid (GABA) and Plant Responses to Stress. Critical Reviews in Plant Sciences, 19(6), 479-509. doi:10.1080/07352680091139277
Roberts, M. R. (2007). Does GABA Act as a Signal in Plants? Hints from Molecular Studies. Plant Signaling & Behavior, 2(5), 408-409. doi:10.4161/psb.2.5.4335
Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N., & Muto, S. (1998). Salicylic Acid Induces Extracellular Superoxide Generation Followed by an Increase in Cytosolic Calcium Ion in Tobacco Suspension Culture: The Earliest Events in Salicylic Acid Signal Transduction. Plant and Cell Physiology, 39(7), 721-730. doi:10.1093/oxfordjournals.pcp.a029426
Ge, Y., Duan, B., Li, C., Tang, Q., Li, X., Wei, M., … Li, J. (2018). γ-Aminobutyric acid delays senescence of blueberry fruit by regulation of reactive oxygen species metabolism and phenylpropanoid pathway. Scientia Horticulturae, 240, 303-309. doi:10.1016/j.scienta.2018.06.044
Aghdam, M. S., Kakavand, F., Rabiei, V., Zaare-Nahandi, F., & Razavi, F. (2019). γ-Aminobutyric acid and nitric oxide treatments preserve sensory and nutritional quality of cornelian cherry fruits during postharvest cold storage by delaying softening and enhancing phenols accumulation. Scientia Horticulturae, 246, 812-817. doi:10.1016/j.scienta.2018.11.064
Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends in Plant Science, 21(10), 811-813. doi:10.1016/j.tplants.2016.08.001
[-]