- -

Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application

Mostrar el registro completo del ítem

Uscategui, YL.; Diaz, LE.; Gómez-Tejedor, J.; Vallés Lluch, A.; Vilariño, G.; Serrano, M.; Valero, MF. (2019). Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application. Molecules. 24(2):1-30. https://doi.org/10.3390/molecules24020237

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158675

Ficheros en el ítem

Metadatos del ítem

Título: Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application
Autor: Uscategui, Yomaira L. Diaz, Luis E. Gómez-Tejedor, José-Antonio Vallés Lluch, Ana Vilariño, Guillermo Serrano, María-Antonia Valero, Manuel F.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor ...[+]
Palabras clave: Castor oil , Biomedical devices , Polyurethanes , Polycaprolactone-diol , Chitosan
Derechos de uso: Reserva de todos los derechos
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules24020237
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules24020237
Código del Proyecto:
info:eu-repo/grantAgreement/Universidad de La Sabana//ING-202-2018/
info:eu-repo/grantAgreement/COLCIENCIAS//617-2-2014/
info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/
Agradecimientos:
This research was funded by the UNIVERSIDAD DE LA SABANA, grant number ING-202-2018 and by COLCIENCIAS under scholarship grant 617-2-2014. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa ...[+]
Tipo: Artículo

References

Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering: C, 42, 763-773. doi:10.1016/j.msec.2014.05.056

Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365-5377. doi:10.1007/s10853-014-8244-x

Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166-176. doi:10.1016/j.msec.2014.10.027 [+]
Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering: C, 42, 763-773. doi:10.1016/j.msec.2014.05.056

Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365-5377. doi:10.1007/s10853-014-8244-x

Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166-176. doi:10.1016/j.msec.2014.10.027

Tsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 125, 34-44. doi:10.1016/j.colsurfb.2014.11.003

Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123

Park, H., Gong, M.-S., Park, J.-H., Moon, S., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin–polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962-8971. doi:10.1016/j.actbio.2013.07.013

Rajan, K. P., Al-Ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 2013, 1-7. doi:10.1155/2013/240631

Adolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science, Polymer Edition, 25(17), 1973-1985. doi:10.1080/09205063.2014.965997

Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947-952. doi:10.1016/j.radphyschem.2010.04.007

Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2012). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Journal of Biomedical Materials Research Part A, 101A(1), 75-86. doi:10.1002/jbm.a.34302

Morral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1-2), 1-13. doi:10.1016/j.ijpharm.2013.11.026

Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553-560. doi:10.1016/j.apsusc.2013.01.085

Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Quintana, P., & Bartolo-Pérez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035-2044. doi:10.1016/j.actbio.2009.12.010

Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630-645. doi:10.1016/j.ijbiomac.2016.02.004

Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant, andin vitrobiocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872-880. doi:10.1080/00914037.2016.1180605

Anirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687-698. doi:10.1016/j.carbpol.2016.06.101

Kaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: Preparation, Characterization, and Application as Bioadhesive Polymer for Drug Delivery. International Journal of Polymeric Materials, 62(9), 475-481. doi:10.1080/00914037.2012.734348

Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180, 304-313. doi:10.1016/j.carbpol.2017.10.022

Aranguren, M. I., González, J. F., & Mosiewicki, M. A. (2012). Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymer Testing, 31(1), 7-15. doi:10.1016/j.polymertesting.2011.09.001

Guelcher, S. A., Srinivasan, A., Dumas, J. E., Didier, J. E., McBride, S., & Hollinger, J. O. (2008). Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials, 29(12), 1762-1775. doi:10.1016/j.biomaterials.2007.12.046

Chanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & Function, 1(3), 254. doi:10.1039/c0fo00113a

Oliveira, C. M. B. de, Sakata, R. K., Issy, A. M., Gerola, L. R., & Salomão, R. (2011). Citocinas e dor. Revista Brasileira de Anestesiologia, 61(2), 260-265. doi:10.1590/s0034-70942011000200014

Small, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, 461, 73-77. doi:10.1016/j.jim.2018.06.019

Lund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64-70. doi:10.1016/j.jim.2016.01.012

Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126-139. doi:10.1016/j.biomaterials.2015.06.037

Lin, T., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747-3755. doi:10.1016/j.actbio.2014.04.034

Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91-143. doi:10.1016/j.progpolymsci.2016.12.009

Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering: C, 78, 163-174. doi:10.1016/j.msec.2017.04.061

Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75, 147-159. doi:10.1016/j.jmbbm.2017.07.018

Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688-695. doi:10.1016/j.apsusc.2014.08.094

Braun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281-291. doi:10.1016/j.jmbbm.2016.08.002

Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115, 41-48. doi:10.1016/j.porgcoat.2017.11.008

Cakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. Č., Nikolić, L. B., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Progress in Organic Coatings, 105, 111-122. doi:10.1016/j.porgcoat.2016.10.038

Ferreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144-152. doi:10.1016/j.ijbiomac.2006.06.023

Arévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708-720. doi:10.1177/0885328216664448

Corcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175-2184. doi:10.1016/j.polymdegradstab.2010.03.001

Uscátegui, Y. L., Arévalo-Alquichire, S. J., Gómez-Tejedor, J. A., Vallés-Lluch, A., Díaz, L. E., & Valero, M. F. (2017). Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. Journal of Materials Research, 32(19), 3699-3711. doi:10.1557/jmr.2017.371

Saikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8-17. doi:10.1016/j.polymdegradstab.2016.11.014

Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances, 6(73), 69094-69102. doi:10.1039/c6ra13492k

Hou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947-956. doi:10.1080/00914037.2016.1180612

Mi, H.-Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L.-S. (2017). Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials & Design, 127, 106-114. doi:10.1016/j.matdes.2017.04.056

Carriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53-61. doi:10.1016/j.eurpolymj.2016.10.012

Cherng, J. Y., Hou, T. Y., Shih, M. F., Talsma, H., & Hennink, W. E. (2013). Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 450(1-2), 145-162. doi:10.1016/j.ijpharm.2013.04.063

Gogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418-1427. doi:10.1016/j.porgcoat.2014.04.021

Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173-185. doi:10.1016/j.eurpolymj.2015.07.022

Reddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, Characterization and Drug Release of Biocompatible/Biodegradable Non-toxic Poly(urethane urea)s Based on Poly(ε-caprolactone)s and Lysine-Based Diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(11), 1483-1502. doi:10.1163/092050609x12518804794785

Coakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix – A potential scaffold in tissue engineered skin. Wound Medicine, 10-11, 9-16. doi:10.1016/j.wndm.2015.11.004

Valero, M. F., Pulido, J. E., Ramírez, Á., Higuita, L. E., Arias, S. M., Gonzáles, C. S., & Ruiz, L. J. (2010). Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas. Química Nova, 33(4), 850-854. doi:10.1590/s0100-40422010000400016

Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1-11. doi:10.1016/j.jmbbm.2014.04.014

Yoshida, K., Jiang, H., Kim, M., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy. PLoS ONE, 9(11), e112391. doi:10.1371/journal.pone.0112391

Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9-15. doi:10.1016/j.ejpe.2016.02.002

Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102, 151-160. doi:10.1016/j.eurpolymj.2018.03.020

Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644-652. doi:10.1016/j.foodhyd.2013.08.011

Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem