Mostrar el registro sencillo del ítem
dc.contributor.author | Uscategui, Yomaira L.![]() |
es_ES |
dc.contributor.author | Diaz, Luis E.![]() |
es_ES |
dc.contributor.author | Gómez-Tejedor, José-Antonio![]() |
es_ES |
dc.contributor.author | Vallés Lluch, Ana![]() |
es_ES |
dc.contributor.author | Vilariño, Guillermo![]() |
es_ES |
dc.contributor.author | Serrano, María-Antonia![]() |
es_ES |
dc.contributor.author | Valero, Manuel F.![]() |
es_ES |
dc.date.accessioned | 2021-01-12T04:31:40Z | |
dc.date.available | 2021-01-12T04:31:40Z | |
dc.date.issued | 2019-01-10 | es_ES |
dc.identifier.issn | 1420-3049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158675 | |
dc.description.abstract | [EN] Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility. | es_ES |
dc.description.sponsorship | This research was funded by the UNIVERSIDAD DE LA SABANA, grant number ING-202-2018 and by COLCIENCIAS under scholarship grant 617-2-2014. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. J.A.G.-T. and A.V.-LL. acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through project DPI2015-65401-C3-2-R (including FEDER financial support). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Molecules | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Castor oil | es_ES |
dc.subject | Biomedical devices | es_ES |
dc.subject | Polyurethanes | es_ES |
dc.subject | Polycaprolactone-diol | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/molecules24020237 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad de La Sabana//ING-202-2018/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COLCIENCIAS//617-2-2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Uscategui, YL.; Diaz, LE.; Gómez-Tejedor, J.; Vallés Lluch, A.; Vilariño, G.; Serrano, M.; Valero, MF. (2019). Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application. Molecules. 24(2):1-30. https://doi.org/10.3390/molecules24020237 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/molecules24020237 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 30 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.pmid | 30634633 | es_ES |
dc.identifier.pmcid | PMC6359294 | es_ES |
dc.relation.pasarela | S\375368 | es_ES |
dc.contributor.funder | Universidad de La Sabana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.description.references | Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering: C, 42, 763-773. doi:10.1016/j.msec.2014.05.056 | es_ES |
dc.description.references | Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365-5377. doi:10.1007/s10853-014-8244-x | es_ES |
dc.description.references | Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166-176. doi:10.1016/j.msec.2014.10.027 | es_ES |
dc.description.references | Tsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 125, 34-44. doi:10.1016/j.colsurfb.2014.11.003 | es_ES |
dc.description.references | Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123 | es_ES |
dc.description.references | Park, H., Gong, M.-S., Park, J.-H., Moon, S., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin–polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962-8971. doi:10.1016/j.actbio.2013.07.013 | es_ES |
dc.description.references | Rajan, K. P., Al-Ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 2013, 1-7. doi:10.1155/2013/240631 | es_ES |
dc.description.references | Adolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science, Polymer Edition, 25(17), 1973-1985. doi:10.1080/09205063.2014.965997 | es_ES |
dc.description.references | Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947-952. doi:10.1016/j.radphyschem.2010.04.007 | es_ES |
dc.description.references | Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2012). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Journal of Biomedical Materials Research Part A, 101A(1), 75-86. doi:10.1002/jbm.a.34302 | es_ES |
dc.description.references | Morral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1-2), 1-13. doi:10.1016/j.ijpharm.2013.11.026 | es_ES |
dc.description.references | Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553-560. doi:10.1016/j.apsusc.2013.01.085 | es_ES |
dc.description.references | Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Quintana, P., & Bartolo-Pérez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035-2044. doi:10.1016/j.actbio.2009.12.010 | es_ES |
dc.description.references | Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630-645. doi:10.1016/j.ijbiomac.2016.02.004 | es_ES |
dc.description.references | Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant, andin vitrobiocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872-880. doi:10.1080/00914037.2016.1180605 | es_ES |
dc.description.references | Anirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687-698. doi:10.1016/j.carbpol.2016.06.101 | es_ES |
dc.description.references | Kaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: Preparation, Characterization, and Application as Bioadhesive Polymer for Drug Delivery. International Journal of Polymeric Materials, 62(9), 475-481. doi:10.1080/00914037.2012.734348 | es_ES |
dc.description.references | Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180, 304-313. doi:10.1016/j.carbpol.2017.10.022 | es_ES |
dc.description.references | Aranguren, M. I., González, J. F., & Mosiewicki, M. A. (2012). Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymer Testing, 31(1), 7-15. doi:10.1016/j.polymertesting.2011.09.001 | es_ES |
dc.description.references | Guelcher, S. A., Srinivasan, A., Dumas, J. E., Didier, J. E., McBride, S., & Hollinger, J. O. (2008). Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials, 29(12), 1762-1775. doi:10.1016/j.biomaterials.2007.12.046 | es_ES |
dc.description.references | Chanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & Function, 1(3), 254. doi:10.1039/c0fo00113a | es_ES |
dc.description.references | Oliveira, C. M. B. de, Sakata, R. K., Issy, A. M., Gerola, L. R., & Salomão, R. (2011). Citocinas e dor. Revista Brasileira de Anestesiologia, 61(2), 260-265. doi:10.1590/s0034-70942011000200014 | es_ES |
dc.description.references | Small, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, 461, 73-77. doi:10.1016/j.jim.2018.06.019 | es_ES |
dc.description.references | Lund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64-70. doi:10.1016/j.jim.2016.01.012 | es_ES |
dc.description.references | Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126-139. doi:10.1016/j.biomaterials.2015.06.037 | es_ES |
dc.description.references | Lin, T., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747-3755. doi:10.1016/j.actbio.2014.04.034 | es_ES |
dc.description.references | Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91-143. doi:10.1016/j.progpolymsci.2016.12.009 | es_ES |
dc.description.references | Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering: C, 78, 163-174. doi:10.1016/j.msec.2017.04.061 | es_ES |
dc.description.references | Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75, 147-159. doi:10.1016/j.jmbbm.2017.07.018 | es_ES |
dc.description.references | Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688-695. doi:10.1016/j.apsusc.2014.08.094 | es_ES |
dc.description.references | Braun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281-291. doi:10.1016/j.jmbbm.2016.08.002 | es_ES |
dc.description.references | Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115, 41-48. doi:10.1016/j.porgcoat.2017.11.008 | es_ES |
dc.description.references | Cakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. Č., Nikolić, L. B., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Progress in Organic Coatings, 105, 111-122. doi:10.1016/j.porgcoat.2016.10.038 | es_ES |
dc.description.references | Ferreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144-152. doi:10.1016/j.ijbiomac.2006.06.023 | es_ES |
dc.description.references | Arévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708-720. doi:10.1177/0885328216664448 | es_ES |
dc.description.references | Corcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175-2184. doi:10.1016/j.polymdegradstab.2010.03.001 | es_ES |
dc.description.references | Uscátegui, Y. L., Arévalo-Alquichire, S. J., Gómez-Tejedor, J. A., Vallés-Lluch, A., Díaz, L. E., & Valero, M. F. (2017). Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. Journal of Materials Research, 32(19), 3699-3711. doi:10.1557/jmr.2017.371 | es_ES |
dc.description.references | Saikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8-17. doi:10.1016/j.polymdegradstab.2016.11.014 | es_ES |
dc.description.references | Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances, 6(73), 69094-69102. doi:10.1039/c6ra13492k | es_ES |
dc.description.references | Hou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947-956. doi:10.1080/00914037.2016.1180612 | es_ES |
dc.description.references | Mi, H.-Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L.-S. (2017). Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials & Design, 127, 106-114. doi:10.1016/j.matdes.2017.04.056 | es_ES |
dc.description.references | Carriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53-61. doi:10.1016/j.eurpolymj.2016.10.012 | es_ES |
dc.description.references | Cherng, J. Y., Hou, T. Y., Shih, M. F., Talsma, H., & Hennink, W. E. (2013). Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 450(1-2), 145-162. doi:10.1016/j.ijpharm.2013.04.063 | es_ES |
dc.description.references | Gogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418-1427. doi:10.1016/j.porgcoat.2014.04.021 | es_ES |
dc.description.references | Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173-185. doi:10.1016/j.eurpolymj.2015.07.022 | es_ES |
dc.description.references | Reddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, Characterization and Drug Release of Biocompatible/Biodegradable Non-toxic Poly(urethane urea)s Based on Poly(ε-caprolactone)s and Lysine-Based Diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(11), 1483-1502. doi:10.1163/092050609x12518804794785 | es_ES |
dc.description.references | Coakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix – A potential scaffold in tissue engineered skin. Wound Medicine, 10-11, 9-16. doi:10.1016/j.wndm.2015.11.004 | es_ES |
dc.description.references | Valero, M. F., Pulido, J. E., Ramírez, Á., Higuita, L. E., Arias, S. M., Gonzáles, C. S., & Ruiz, L. J. (2010). Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas. Química Nova, 33(4), 850-854. doi:10.1590/s0100-40422010000400016 | es_ES |
dc.description.references | Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1-11. doi:10.1016/j.jmbbm.2014.04.014 | es_ES |
dc.description.references | Yoshida, K., Jiang, H., Kim, M., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy. PLoS ONE, 9(11), e112391. doi:10.1371/journal.pone.0112391 | es_ES |
dc.description.references | Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9-15. doi:10.1016/j.ejpe.2016.02.002 | es_ES |
dc.description.references | Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102, 151-160. doi:10.1016/j.eurpolymj.2018.03.020 | es_ES |
dc.description.references | Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644-652. doi:10.1016/j.foodhyd.2013.08.011 | es_ES |
dc.description.references | Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040 | es_ES |