- -

Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Uscategui, Yomaira L. es_ES
dc.contributor.author Diaz, Luis E. es_ES
dc.contributor.author Gómez-Tejedor, José-Antonio es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Vilariño, Guillermo es_ES
dc.contributor.author Serrano, María-Antonia es_ES
dc.contributor.author Valero, Manuel F. es_ES
dc.date.accessioned 2021-01-12T04:31:40Z
dc.date.available 2021-01-12T04:31:40Z
dc.date.issued 2019-01-10 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158675
dc.description.abstract [EN] Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility. es_ES
dc.description.sponsorship This research was funded by the UNIVERSIDAD DE LA SABANA, grant number ING-202-2018 and by COLCIENCIAS under scholarship grant 617-2-2014. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. J.A.G.-T. and A.V.-LL. acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through project DPI2015-65401-C3-2-R (including FEDER financial support). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Castor oil es_ES
dc.subject Biomedical devices es_ES
dc.subject Polyurethanes es_ES
dc.subject Polycaprolactone-diol es_ES
dc.subject Chitosan es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules24020237 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad de La Sabana//ING-202-2018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//617-2-2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-65401-C3-2-R/ES/SOPORTES POLIMERICOS MULTIFUNCIONALES PARA CO-CULTIVO CELULAR INDIRECTO Y ESTIMULACION QUIMICA DESTINADOS A MIMETIZAR TEJIDO RENAL IN VITRO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Uscategui, YL.; Diaz, LE.; Gómez-Tejedor, J.; Vallés Lluch, A.; Vilariño, G.; Serrano, M.; Valero, MF. (2019). Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Application. Molecules. 24(2):1-30. https://doi.org/10.3390/molecules24020237 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules24020237 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 30634633 es_ES
dc.identifier.pmcid PMC6359294 es_ES
dc.relation.pasarela S\375368 es_ES
dc.contributor.funder Universidad de La Sabana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Alishiri, M., Shojaei, A., Abdekhodaie, M. J., & Yeganeh, H. (2014). Synthesis and characterization of biodegradable acrylated polyurethane based on poly(ε-caprolactone) and 1,6-hexamethylene diisocyanate. Materials Science and Engineering: C, 42, 763-773. doi:10.1016/j.msec.2014.05.056 es_ES
dc.description.references Bakhshi, H., Yeganeh, H., Yari, A., & Nezhad, S. K. (2014). Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: synthesis, characterization, and biological properties. Journal of Materials Science, 49(15), 5365-5377. doi:10.1007/s10853-014-8244-x es_ES
dc.description.references Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering: C, 46, 166-176. doi:10.1016/j.msec.2014.10.027 es_ES
dc.description.references Tsai, M.-C., Hung, K.-C., Hung, S.-C., & Hsu, S. (2015). Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 125, 34-44. doi:10.1016/j.colsurfb.2014.11.003 es_ES
dc.description.references Rocco, K. A., Maxfield, M. W., Best, C. A., Dean, E. W., & Breuer, C. K. (2014). In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering Part B: Reviews, 20(6), 628-640. doi:10.1089/ten.teb.2014.0123 es_ES
dc.description.references Park, H., Gong, M.-S., Park, J.-H., Moon, S., Wall, I. B., Kim, H.-W., … Knowles, J. C. (2013). Silk fibroin–polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomaterialia, 9(11), 8962-8971. doi:10.1016/j.actbio.2013.07.013 es_ES
dc.description.references Rajan, K. P., Al-Ghamdi, A., Parameswar, R., & Nando, G. B. (2013). Blends of Thermoplastic Polyurethane and Polydimethylsiloxane Rubber: Assessment of Biocompatibility and Suture Holding Strength of Membranes. International Journal of Biomaterials, 2013, 1-7. doi:10.1155/2013/240631 es_ES
dc.description.references Adolph, E. J., Pollins, A. C., Cardwell, N. L., Davidson, J. M., Guelcher, S. A., & Nanney, L. B. (2014). Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. Journal of Biomaterials Science, Polymer Edition, 25(17), 1973-1985. doi:10.1080/09205063.2014.965997 es_ES
dc.description.references Shourgashti, Z., Khorasani, M. T., & Khosroshahi, S. M. E. (2010). Plasma-induced grafting of polydimethylsiloxane onto polyurethane surface: Characterization and in vitro assay. Radiation Physics and Chemistry, 79(9), 947-952. doi:10.1016/j.radphyschem.2010.04.007 es_ES
dc.description.references Qiu, H., Li, D., Chen, X., Fan, K., Ou, W., Chen, K. C., & Xu, K. (2012). Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Journal of Biomedical Materials Research Part A, 101A(1), 75-86. doi:10.1002/jbm.a.34302 es_ES
dc.description.references Morral-Ruíz, G., Melgar-Lesmes, P., García, M. L., Solans, C., & García-Celma, M. J. (2014). Polyurethane and polyurea nanoparticles based on polyoxyethylene castor oil derivative surfactant suitable for endovascular applications. International Journal of Pharmaceutics, 461(1-2), 1-13. doi:10.1016/j.ijpharm.2013.11.026 es_ES
dc.description.references Dulińska-Molak, I., Lekka, M., & Kurzydłowski, K. J. (2013). Surface properties of polyurethane composites for biomedical applications. Applied Surface Science, 270, 553-560. doi:10.1016/j.apsusc.2013.01.085 es_ES
dc.description.references Chan-Chan, L. H., Solis-Correa, R., Vargas-Coronado, R. F., Cervantes-Uc, J. M., Cauich-Rodríguez, J. V., Quintana, P., & Bartolo-Pérez, P. (2010). Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomaterialia, 6(6), 2035-2044. doi:10.1016/j.actbio.2009.12.010 es_ES
dc.description.references Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 86, 630-645. doi:10.1016/j.ijbiomac.2016.02.004 es_ES
dc.description.references Wu, C.-S. (2016). Enhanced antibacterial activity, antioxidant, andin vitrobiocompatibility of modified polycaprolactone-based membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 872-880. doi:10.1080/00914037.2016.1180605 es_ES
dc.description.references Anirudhan, T. S., Nair, S. S., & Nair, A. S. (2016). Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydrate Polymers, 152, 687-698. doi:10.1016/j.carbpol.2016.06.101 es_ES
dc.description.references Kaur, G., Mahajan, M., & Bassi, P. (2013). Derivatized Polysaccharides: Preparation, Characterization, and Application as Bioadhesive Polymer for Drug Delivery. International Journal of Polymeric Materials, 62(9), 475-481. doi:10.1080/00914037.2012.734348 es_ES
dc.description.references Wu, H., Williams, G. R., Wu, J., Wu, J., Niu, S., Li, H., … Zhu, L. (2018). Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials. Carbohydrate Polymers, 180, 304-313. doi:10.1016/j.carbpol.2017.10.022 es_ES
dc.description.references Aranguren, M. I., González, J. F., & Mosiewicki, M. A. (2012). Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymer Testing, 31(1), 7-15. doi:10.1016/j.polymertesting.2011.09.001 es_ES
dc.description.references Guelcher, S. A., Srinivasan, A., Dumas, J. E., Didier, J. E., McBride, S., & Hollinger, J. O. (2008). Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials, 29(12), 1762-1775. doi:10.1016/j.biomaterials.2007.12.046 es_ES
dc.description.references Chanput, W., Mes, J., Vreeburg, R. A. M., Savelkoul, H. F. J., & Wichers, H. J. (2010). Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & Function, 1(3), 254. doi:10.1039/c0fo00113a es_ES
dc.description.references Oliveira, C. M. B. de, Sakata, R. K., Issy, A. M., Gerola, L. R., & Salomão, R. (2011). Citocinas e dor. Revista Brasileira de Anestesiologia, 61(2), 260-265. doi:10.1590/s0034-70942011000200014 es_ES
dc.description.references Small, A., Lansdown, N., Al-Baghdadi, M., Quach, A., & Ferrante, A. (2018). Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. Journal of Immunological Methods, 461, 73-77. doi:10.1016/j.jim.2018.06.019 es_ES
dc.description.references Lund, M. E., To, J., O’Brien, B. A., & Donnelly, S. (2016). The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, 430, 64-70. doi:10.1016/j.jim.2016.01.012 es_ES
dc.description.references Dash, B. C., Thomas, D., Monaghan, M., Carroll, O., Chen, X., Woodhouse, K., … Pandit, A. (2015). An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 65, 126-139. doi:10.1016/j.biomaterials.2015.06.037 es_ES
dc.description.references Lin, T., Yao, Z., Sato, T., Keeney, M., Li, C., Pajarinen, J., … Goodman, S. B. (2014). Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomaterialia, 10(8), 3747-3755. doi:10.1016/j.actbio.2014.04.034 es_ES
dc.description.references Zhang, C., Garrison, T. F., Madbouly, S. A., & Kessler, M. R. (2017). Recent advances in vegetable oil-based polymers and their composites. Progress in Polymer Science, 71, 91-143. doi:10.1016/j.progpolymsci.2016.12.009 es_ES
dc.description.references Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., … Schnabelrauch, M. (2017). In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Materials Science and Engineering: C, 78, 163-174. doi:10.1016/j.msec.2017.04.061 es_ES
dc.description.references Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., … Gerges, I. (2017). 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. Journal of the Mechanical Behavior of Biomedical Materials, 75, 147-159. doi:10.1016/j.jmbbm.2017.07.018 es_ES
dc.description.references Chashmejahanbin, M. R., Daemi, H., Barikani, M., & Salimi, A. (2014). Noteworthy impacts of polyurethane-urea ionomers as the efficient polar coatings on adhesion strength of plasma treated polypropylene. Applied Surface Science, 317, 688-695. doi:10.1016/j.apsusc.2014.08.094 es_ES
dc.description.references Braun, U., Lorenz, E., Weimann, C., Sturm, H., Karimov, I., Ettl, J., … Wildgruber, M. (2016). Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials. Journal of the Mechanical Behavior of Biomedical Materials, 64, 281-291. doi:10.1016/j.jmbbm.2016.08.002 es_ES
dc.description.references Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., & Datta, J. (2018). The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Progress in Organic Coatings, 115, 41-48. doi:10.1016/j.porgcoat.2017.11.008 es_ES
dc.description.references Cakić, S. M., Ristić, I. S., Cincović, M. M., Nikolić, N. Č., Nikolić, L. B., & Cvetinov, M. J. (2017). Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Progress in Organic Coatings, 105, 111-122. doi:10.1016/j.porgcoat.2016.10.038 es_ES
dc.description.references Ferreira, P., Pereira, R., Coelho, J. F. J., Silva, A. F. M., & Gil, M. H. (2007). Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. International Journal of Biological Macromolecules, 40(2), 144-152. doi:10.1016/j.ijbiomac.2006.06.023 es_ES
dc.description.references Arévalo, F., Uscategui, Y. L., Diaz, L., Cobo, M., & Valero, M. F. (2016). Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. Journal of Biomaterials Applications, 31(5), 708-720. doi:10.1177/0885328216664448 es_ES
dc.description.references Corcuera, M. A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., & Eceiza, A. (2010). Microstructure and properties of polyurethanes derived from castor oil. Polymer Degradation and Stability, 95(11), 2175-2184. doi:10.1016/j.polymdegradstab.2010.03.001 es_ES
dc.description.references Uscátegui, Y. L., Arévalo-Alquichire, S. J., Gómez-Tejedor, J. A., Vallés-Lluch, A., Díaz, L. E., & Valero, M. F. (2017). Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. Journal of Materials Research, 32(19), 3699-3711. doi:10.1557/jmr.2017.371 es_ES
dc.description.references Saikia, A., & Karak, N. (2017). Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polymer Degradation and Stability, 135, 8-17. doi:10.1016/j.polymdegradstab.2016.11.014 es_ES
dc.description.references Sáenz-Pérez, M., Lizundia, E., Laza, J. M., García-Barrasa, J., Vilas, J. L., & León, L. M. (2016). Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: thermal, shape-memory and mechanical behavior. RSC Advances, 6(73), 69094-69102. doi:10.1039/c6ra13492k es_ES
dc.description.references Hou, Z., Zhang, H., Qu, W., Xu, Z., & Han, Z. (2016). Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(18), 947-956. doi:10.1080/00914037.2016.1180612 es_ES
dc.description.references Mi, H.-Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L.-S. (2017). Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials & Design, 127, 106-114. doi:10.1016/j.matdes.2017.04.056 es_ES
dc.description.references Carriço, C. S., Fraga, T., & Pasa, V. M. D. (2016). Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. European Polymer Journal, 85, 53-61. doi:10.1016/j.eurpolymj.2016.10.012 es_ES
dc.description.references Cherng, J. Y., Hou, T. Y., Shih, M. F., Talsma, H., & Hennink, W. E. (2013). Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 450(1-2), 145-162. doi:10.1016/j.ijpharm.2013.04.063 es_ES
dc.description.references Gogoi, S., Barua, S., & Karak, N. (2014). Biodegradable and thermostable synthetic hyperbranched poly(urethane-urea)s as advanced surface coating materials. Progress in Organic Coatings, 77(9), 1418-1427. doi:10.1016/j.porgcoat.2014.04.021 es_ES
dc.description.references Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, Á., Corcuera, M. A., & Eceiza, A. (2015). Thermally-responsive biopolyurethanes from a biobased diisocyanate. European Polymer Journal, 70, 173-185. doi:10.1016/j.eurpolymj.2015.07.022 es_ES
dc.description.references Reddy, T. T., Kano, A., Maruyama, A., & Takahara, A. (2010). Synthesis, Characterization and Drug Release of Biocompatible/Biodegradable Non-toxic Poly(urethane urea)s Based on Poly(ε-caprolactone)s and Lysine-Based Diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(11), 1483-1502. doi:10.1163/092050609x12518804794785 es_ES
dc.description.references Coakley, D. N., Shaikh, F. M., O’Sullivan, K., Kavanagh, E. G., Grace, P. A., & McGloughlin, T. M. (2015). In vitro evaluation of acellular porcine urinary bladder extracellular matrix – A potential scaffold in tissue engineered skin. Wound Medicine, 10-11, 9-16. doi:10.1016/j.wndm.2015.11.004 es_ES
dc.description.references Valero, M. F., Pulido, J. E., Ramírez, Á., Higuita, L. E., Arias, S. M., Gonzáles, C. S., & Ruiz, L. J. (2010). Poliuretanos elastoméricos obtenidos a partir de aceite de ricino y almidón de yuca original y modificado con anhídrido propiónico: síntesis, propiedades fisicoquímicas y fisicomecánicas. Química Nova, 33(4), 850-854. doi:10.1590/s0100-40422010000400016 es_ES
dc.description.references Simón-Allué, R., Pérez-López, P., Sotomayor, S., Peña, E., Pascual, G., Bellón, J. M., & Calvo, B. (2014). Short- and long-term biomechanical and morphological study of new suture types in abdominal wall closure. Journal of the Mechanical Behavior of Biomedical Materials, 37, 1-11. doi:10.1016/j.jmbbm.2014.04.014 es_ES
dc.description.references Yoshida, K., Jiang, H., Kim, M., Vink, J., Cremers, S., Paik, D., … Myers, K. (2014). Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy. PLoS ONE, 9(11), e112391. doi:10.1371/journal.pone.0112391 es_ES
dc.description.references Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egyptian Journal of Petroleum, 26(1), 9-15. doi:10.1016/j.ejpe.2016.02.002 es_ES
dc.description.references Hormaiztegui, M. E. V., Aranguren, M. I., & Mucci, V. L. (2018). Synthesis and characterization of a waterborne polyurethane made from castor oil and tartaric acid. European Polymer Journal, 102, 151-160. doi:10.1016/j.eurpolymj.2018.03.020 es_ES
dc.description.references Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644-652. doi:10.1016/j.foodhyd.2013.08.011 es_ES
dc.description.references Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem