- -

Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings

Show full item record

Martinez-Millana, A.; Argente-Pla, M.; Valdivieso Martinez, B.; Traver Salcedo, V.; Merino-Torres, JF. (2019). Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings. Journal of Clinical Medicine. 8(1):1-19. https://doi.org/10.3390/jcm8010107

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158677

Files in this item

Item Metadata

Title: Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings
Author: Martinez-Millana, Antonio Argente-Pla, María Valdivieso Martinez, Bernardo Traver Salcedo, Vicente Merino-Torres, Juan Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Electronic health records and computational modelling have paved the way for the development of Type 2 Diabetes risk scores to identify subjects at high risk. Unfortunately, few risk scores have been externally ...[+]
Subjects: Risk scores , Prediction , T2DM , Clinical data , Screening
Copyrigths: Reconocimiento (by)
Source:
Journal of Clinical Medicine. (eissn: 2077-0383 )
DOI: 10.3390/jcm8010107
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/jcm8010107
Project ID:
info:eu-repo/grantAgreement/EC/FP7/600914/EU/MOSAIC - MOdels and Simulation techniques for discovering diAbetes Influence faCtors/
Thanks:
MOSAIC project, funded by the European Commission Grant nr. FP7-ICT 600914.
Type: Artículo

References

Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163

Asghari, S., Courteau, J., Carpentier, A. C., & Vanasse, A. (2009). Optimal strategy to identify incidence of diagnostic of diabetes using administrative data. BMC Medical Research Methodology, 9(1). doi:10.1186/1471-2288-9-62

Chatterton, H., Younger, T., Fischer, A., & Khunti, K. (2012). Risk identification and interventions to prevent type 2 diabetes in adults at high risk: summary of NICE guidance. BMJ, 345(jul12 3), e4624-e4624. doi:10.1136/bmj.e4624 [+]
Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163

Asghari, S., Courteau, J., Carpentier, A. C., & Vanasse, A. (2009). Optimal strategy to identify incidence of diagnostic of diabetes using administrative data. BMC Medical Research Methodology, 9(1). doi:10.1186/1471-2288-9-62

Chatterton, H., Younger, T., Fischer, A., & Khunti, K. (2012). Risk identification and interventions to prevent type 2 diabetes in adults at high risk: summary of NICE guidance. BMJ, 345(jul12 3), e4624-e4624. doi:10.1136/bmj.e4624

Vergouwe, Y., Steyerberg, E. W., Eijkemans, M. J. C., & Habbema, J. D. F. (2005). Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. Journal of Clinical Epidemiology, 58(5), 475-483. doi:10.1016/j.jclinepi.2004.06.017

Gray, L. J., & Khunti, K. (2013). Type 2 diabetes risk prediction—Do biomarkers increase detection? Diabetes Research and Clinical Practice, 101(3), 245-247. doi:10.1016/j.diabres.2013.07.008

Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons, K. G. M., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, i3140. doi:10.1136/bmj.i3140

Williams, R., Kontopantelis, E., Buchan, I., & Peek, N. (2017). Clinical code set engineering for reusing EHR data for research: A review. Journal of Biomedical Informatics, 70, 1-13. doi:10.1016/j.jbi.2017.04.010

Meigs, J. B., Shrader, P., Sullivan, L. M., McAteer, J. B., Fox, C. S., Dupuis, J., … Cupples, L. A. (2008). Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 359(21), 2208-2219. doi:10.1056/nejmoa0804742

Bobo, W. V., Cooper, W. O., Stein, C. M., Olfson, M., Mounsey, J., Daugherty, J., & Ray, W. A. (2012). Positive predictive value of a case definition for diabetes mellitus using automated administrative health data in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid study. BMC Medical Research Methodology, 12(1). doi:10.1186/1471-2288-12-128

Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338(mar17 2), b880-b880. doi:10.1136/bmj.b880

Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002

Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. (2002). New England Journal of Medicine, 346(6), 393-403. doi:10.1056/nejmoa012512

Selvin, E., Wang, D., Lee, A. K., Bergenstal, R. M., & Coresh, J. (2017). Identifying Trends in Undiagnosed Diabetes in U.S. Adults by Using a Confirmatory Definition. Annals of Internal Medicine, 167(11), 769. doi:10.7326/m17-1272

Sattar, N., Preiss, D., Murray, H. M., Welsh, P., Buckley, B. M., de Craen, A. J., … Ford, I. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. The Lancet, 375(9716), 735-742. doi:10.1016/s0140-6736(09)61965-6

Paprott, R., Mühlenbruch, K., Mensink, G. B. M., Thiele, S., Schulze, M. B., Scheidt-Nave, C., & Heidemann, C. (2016). Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Research & Care, 4(1), e000280. doi:10.1136/bmjdrc-2016-000280

Lindstrom, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. doi:10.2337/diacare.26.3.725

Hippisley-Cox, J., & Coupland, C. (2017). Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ, j5019. doi:10.1136/bmj.j5019

Martinez-Millana, A., Bayo-Monton, J.-L., Argente-Pla, M., Fernandez-Llatas, C., Merino-Torres, J., & Traver-Salcedo, V. (2017). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors, 18(2), 79. doi:10.3390/s18010079

(2016). 2. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11-S24. doi:10.2337/dc17-s005

Valdes, S., Botas, P., Delgado, E., Alvarez, F., & Cadorniga, F. D. (2007). Population-Based Incidence of Type 2 Diabetes in Northern Spain: The Asturias Study. Diabetes Care, 30(9), 2258-2263. doi:10.2337/dc06-2461

Sambo, F., Di Camillo, B., Franzin, A., Facchinetti, A., Hakaste, L., Kravic, J., … Cobelli, C. (2015). A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318807

Buijsse, B., Simmons, R. K., Griffin, S. J., & Schulze, M. B. (2011). Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes. Epidemiologic Reviews, 33(1), 46-62. doi:10.1093/epirev/mxq019

ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. (2013). European Heart Journal, 34(39), 3035-3087. doi:10.1093/eurheartj/eht108

Reilly, B. M., & Evans, A. T. (2006). Translating Clinical Research into Clinical Practice: Impact of Using Prediction Rules To Make Decisions. Annals of Internal Medicine, 144(3), 201. doi:10.7326/0003-4819-144-3-200602070-00009

Collins, G. S., & Moons, K. G. M. (2012). Comparing risk prediction models. BMJ, 344(may24 2), e3186-e3186. doi:10.1136/bmj.e3186

Guasch-Ferré, M., Bulló, M., Costa, B., Martínez-Gonzalez, M. Á., Ibarrola-Jurado, N., … Estruch, R. (2012). A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. PLoS ONE, 7(3), e33437. doi:10.1371/journal.pone.0033437

Alssema, M., Vistisen, D., Heymans, M. W., Nijpels, G., Glümer, C., … Dekker, J. M. (2010). The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia, 54(5), 1004-1012. doi:10.1007/s00125-010-1990-7

Schmidt, M. I., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., … Golden, S. H. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. doi:10.2337/diacare.28.8.2013

Mann, D. M., Bertoni, A. G., Shimbo, D., Carnethon, M. R., Chen, H., Jenny, N. S., & Muntner, P. (2010). Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort: The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 171(9), 980-988. doi:10.1093/aje/kwq030

Stern, M. P., Williams, K., & Haffner, S. M. (2002). Identification of Persons at High Risk for Type 2 Diabetes Mellitus: Do We Need the Oral Glucose Tolerance Test? Annals of Internal Medicine, 136(8), 575. doi:10.7326/0003-4819-136-8-200204160-00006

Abdul-Ghani, M. A., Abdul-Ghani, T., Stern, M. P., Karavic, J., Tuomi, T., Bo, I., … Groop, L. (2011). Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk. Diabetes Care, 34(9), 2108-2112. doi:10.2337/dc10-2201

Collins, G. S., & Altman, D. G. (2011). External validation of QDSCORE® for predicting the 10-year risk of developing Type 2 diabetes. Diabetic Medicine, 28(5), 599-607. doi:10.1111/j.1464-5491.2011.03237.x

Rahman, M., Simmons, R. K., Harding, A.-H., Wareham, N. J., & Griffin, S. J. (2008). A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Family Practice, 25(3), 191-196. doi:10.1093/fampra/cmn024

Talmud, P. J., Hingorani, A. D., Cooper, J. A., Marmot, M. G., Brunner, E. J., Kumari, M., … Humphries, S. E. (2010). Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ, 340(jan14 1), b4838-b4838. doi:10.1136/bmj.b4838

Rubin, D. B. (1996). Multiple Imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473-489. doi:10.1080/01621459.1996.10476908

Pyykkonen, A.-J., Raikkonen, K., Tuomi, T., Eriksson, J. G., Groop, L., & Isomaa, B. (2011). Depressive Symptoms, Antidepressant Medication Use, and Insulin Resistance: The PPP-Botnia Study. Diabetes Care, 34(12), 2545-2547. doi:10.2337/dc11-0107

Franzin, A., Sambo, F., & Di Camillo, B. (2016). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data. Bioinformatics, btw807. doi:10.1093/bioinformatics/btw807

Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine, 162(1), 55. doi:10.7326/m14-0697

Collins, D., Lee, J., Bobrovitz, N., Koshiaris, C., Ward, A., & Heneghan, C. (2016). Simple and adaptable R implementation of WHO/ISH cardiovascular risk charts for all epidemiological subregions of the world. F1000Research, 5, 2522. doi:10.12688/f1000research.9742.1

Lindström, J., Ilanne-Parikka, P., Peltonen, M., Aunola, S., Eriksson, J. G., Hemiö, K., … Tuomilehto, J. (2006). Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet, 368(9548), 1673-1679. doi:10.1016/s0140-6736(06)69701-8

Montonen, J., Knekt, P., Järvinen, R., Aromaa, A., & Reunanen, A. (2003). Whole-grain and fiber intake and the incidence of type 2 diabetes. The American Journal of Clinical Nutrition, 77(3), 622-629. doi:10.1093/ajcn/77.3.622

Lin, C.-C., Li, C.-I., Liu, C.-S., Lin, W.-Y., Lin, C.-H., Yang, S.-Y., & Li, T.-C. (2017). Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Scientific Reports, 7(1). doi:10.1038/s41598-017-09243-9

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record