- -

Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Argente-Pla, María es_ES
dc.contributor.author Valdivieso Martinez, Bernardo es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.contributor.author Merino-Torres, Juan Francisco es_ES
dc.date.accessioned 2021-01-12T04:31:48Z
dc.date.available 2021-01-12T04:31:48Z
dc.date.issued 2019-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158677
dc.description.abstract [EN] Electronic health records and computational modelling have paved the way for the development of Type 2 Diabetes risk scores to identify subjects at high risk. Unfortunately, few risk scores have been externally validated, and their performance can be compromised when routine clinical data is used. The aim of this study was to assess the performance of well-established risk scores for Type 2 Diabetes using routinely collected clinical data and to quantify their impact on the decision making process of endocrinologists. We tested six risk models that have been validated in external cohorts, as opposed to model development, on electronic health records collected from 2008-2015 from a population of 10,730 subjects. Unavailable or missing data in electronic health records was imputed using an existing validated Bayesian Network. Risk scores were assessed on the basis of statistical performance to differentiate between subjects who developed diabetes and those who did not. Eight endocrinologists provided clinical recommendations based on the risk score output. Due to inaccuracies and discrepancies regarding the exact date of Type 2 Diabetes onset, 76 subjects from the initial population were eligible for the study. Risk scores were useful for identifying subjects who developed diabetes (Framingham risk score yielded a c-statistic of 85%), however, our findings suggest that electronic health records are not prepared to massively use this type of risk scores. Use of a Bayesian Network was key for completion of the risk estimation and did not affect the risk score calculation (p > 0.05). Risk score estimation did not have a significant effect on the clinical recommendation except for starting pharmacological treatment (p = 0.004) and dietary counselling (p = 0.039). Despite their potential use, electronic health records should be carefully analyzed before the massive use of Type 2 Diabetes risk scores for the identification of high-risk subjects, and subsequent targeting of preventive actions. es_ES
dc.description.sponsorship MOSAIC project, funded by the European Commission Grant nr. FP7-ICT 600914. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of Clinical Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Risk scores es_ES
dc.subject Prediction es_ES
dc.subject T2DM es_ES
dc.subject Clinical data es_ES
dc.subject Screening es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jcm8010107 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600914/EU/MOSAIC - MOdels and Simulation techniques for discovering diAbetes Influence faCtors/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martinez-Millana, A.; Argente-Pla, M.; Valdivieso Martinez, B.; Traver Salcedo, V.; Merino-Torres, JF. (2019). Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings. Journal of Clinical Medicine. 8(1):1-19. https://doi.org/10.3390/jcm8010107 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jcm8010107 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2077-0383 es_ES
dc.identifier.pmid 30658456 es_ES
dc.identifier.pmcid PMC6352264 es_ES
dc.relation.pasarela S\376366 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163 es_ES
dc.description.references Asghari, S., Courteau, J., Carpentier, A. C., & Vanasse, A. (2009). Optimal strategy to identify incidence of diagnostic of diabetes using administrative data. BMC Medical Research Methodology, 9(1). doi:10.1186/1471-2288-9-62 es_ES
dc.description.references Chatterton, H., Younger, T., Fischer, A., & Khunti, K. (2012). Risk identification and interventions to prevent type 2 diabetes in adults at high risk: summary of NICE guidance. BMJ, 345(jul12 3), e4624-e4624. doi:10.1136/bmj.e4624 es_ES
dc.description.references Vergouwe, Y., Steyerberg, E. W., Eijkemans, M. J. C., & Habbema, J. D. F. (2005). Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. Journal of Clinical Epidemiology, 58(5), 475-483. doi:10.1016/j.jclinepi.2004.06.017 es_ES
dc.description.references Gray, L. J., & Khunti, K. (2013). Type 2 diabetes risk prediction—Do biomarkers increase detection? Diabetes Research and Clinical Practice, 101(3), 245-247. doi:10.1016/j.diabres.2013.07.008 es_ES
dc.description.references Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons, K. G. M., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, i3140. doi:10.1136/bmj.i3140 es_ES
dc.description.references Williams, R., Kontopantelis, E., Buchan, I., & Peek, N. (2017). Clinical code set engineering for reusing EHR data for research: A review. Journal of Biomedical Informatics, 70, 1-13. doi:10.1016/j.jbi.2017.04.010 es_ES
dc.description.references Meigs, J. B., Shrader, P., Sullivan, L. M., McAteer, J. B., Fox, C. S., Dupuis, J., … Cupples, L. A. (2008). Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 359(21), 2208-2219. doi:10.1056/nejmoa0804742 es_ES
dc.description.references Bobo, W. V., Cooper, W. O., Stein, C. M., Olfson, M., Mounsey, J., Daugherty, J., & Ray, W. A. (2012). Positive predictive value of a case definition for diabetes mellitus using automated administrative health data in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid study. BMC Medical Research Methodology, 12(1). doi:10.1186/1471-2288-12-128 es_ES
dc.description.references Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338(mar17 2), b880-b880. doi:10.1136/bmj.b880 es_ES
dc.description.references Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002 es_ES
dc.description.references Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. (2002). New England Journal of Medicine, 346(6), 393-403. doi:10.1056/nejmoa012512 es_ES
dc.description.references Selvin, E., Wang, D., Lee, A. K., Bergenstal, R. M., & Coresh, J. (2017). Identifying Trends in Undiagnosed Diabetes in U.S. Adults by Using a Confirmatory Definition. Annals of Internal Medicine, 167(11), 769. doi:10.7326/m17-1272 es_ES
dc.description.references Sattar, N., Preiss, D., Murray, H. M., Welsh, P., Buckley, B. M., de Craen, A. J., … Ford, I. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. The Lancet, 375(9716), 735-742. doi:10.1016/s0140-6736(09)61965-6 es_ES
dc.description.references Paprott, R., Mühlenbruch, K., Mensink, G. B. M., Thiele, S., Schulze, M. B., Scheidt-Nave, C., & Heidemann, C. (2016). Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Research & Care, 4(1), e000280. doi:10.1136/bmjdrc-2016-000280 es_ES
dc.description.references Lindstrom, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. doi:10.2337/diacare.26.3.725 es_ES
dc.description.references Hippisley-Cox, J., & Coupland, C. (2017). Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ, j5019. doi:10.1136/bmj.j5019 es_ES
dc.description.references Martinez-Millana, A., Bayo-Monton, J.-L., Argente-Pla, M., Fernandez-Llatas, C., Merino-Torres, J., & Traver-Salcedo, V. (2017). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors, 18(2), 79. doi:10.3390/s18010079 es_ES
dc.description.references (2016). 2. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11-S24. doi:10.2337/dc17-s005 es_ES
dc.description.references Valdes, S., Botas, P., Delgado, E., Alvarez, F., & Cadorniga, F. D. (2007). Population-Based Incidence of Type 2 Diabetes in Northern Spain: The Asturias Study. Diabetes Care, 30(9), 2258-2263. doi:10.2337/dc06-2461 es_ES
dc.description.references Sambo, F., Di Camillo, B., Franzin, A., Facchinetti, A., Hakaste, L., Kravic, J., … Cobelli, C. (2015). A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318807 es_ES
dc.description.references Buijsse, B., Simmons, R. K., Griffin, S. J., & Schulze, M. B. (2011). Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes. Epidemiologic Reviews, 33(1), 46-62. doi:10.1093/epirev/mxq019 es_ES
dc.description.references ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. (2013). European Heart Journal, 34(39), 3035-3087. doi:10.1093/eurheartj/eht108 es_ES
dc.description.references Reilly, B. M., & Evans, A. T. (2006). Translating Clinical Research into Clinical Practice: Impact of Using Prediction Rules To Make Decisions. Annals of Internal Medicine, 144(3), 201. doi:10.7326/0003-4819-144-3-200602070-00009 es_ES
dc.description.references Collins, G. S., & Moons, K. G. M. (2012). Comparing risk prediction models. BMJ, 344(may24 2), e3186-e3186. doi:10.1136/bmj.e3186 es_ES
dc.description.references Guasch-Ferré, M., Bulló, M., Costa, B., Martínez-Gonzalez, M. Á., Ibarrola-Jurado, N., … Estruch, R. (2012). A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. PLoS ONE, 7(3), e33437. doi:10.1371/journal.pone.0033437 es_ES
dc.description.references Alssema, M., Vistisen, D., Heymans, M. W., Nijpels, G., Glümer, C., … Dekker, J. M. (2010). The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia, 54(5), 1004-1012. doi:10.1007/s00125-010-1990-7 es_ES
dc.description.references Schmidt, M. I., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., … Golden, S. H. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. doi:10.2337/diacare.28.8.2013 es_ES
dc.description.references Mann, D. M., Bertoni, A. G., Shimbo, D., Carnethon, M. R., Chen, H., Jenny, N. S., & Muntner, P. (2010). Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort: The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 171(9), 980-988. doi:10.1093/aje/kwq030 es_ES
dc.description.references Stern, M. P., Williams, K., & Haffner, S. M. (2002). Identification of Persons at High Risk for Type 2 Diabetes Mellitus: Do We Need the Oral Glucose Tolerance Test? Annals of Internal Medicine, 136(8), 575. doi:10.7326/0003-4819-136-8-200204160-00006 es_ES
dc.description.references Abdul-Ghani, M. A., Abdul-Ghani, T., Stern, M. P., Karavic, J., Tuomi, T., Bo, I., … Groop, L. (2011). Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk. Diabetes Care, 34(9), 2108-2112. doi:10.2337/dc10-2201 es_ES
dc.description.references Collins, G. S., & Altman, D. G. (2011). External validation of QDSCORE® for predicting the 10-year risk of developing Type 2 diabetes. Diabetic Medicine, 28(5), 599-607. doi:10.1111/j.1464-5491.2011.03237.x es_ES
dc.description.references Rahman, M., Simmons, R. K., Harding, A.-H., Wareham, N. J., & Griffin, S. J. (2008). A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Family Practice, 25(3), 191-196. doi:10.1093/fampra/cmn024 es_ES
dc.description.references Talmud, P. J., Hingorani, A. D., Cooper, J. A., Marmot, M. G., Brunner, E. J., Kumari, M., … Humphries, S. E. (2010). Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ, 340(jan14 1), b4838-b4838. doi:10.1136/bmj.b4838 es_ES
dc.description.references Rubin, D. B. (1996). Multiple Imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473-489. doi:10.1080/01621459.1996.10476908 es_ES
dc.description.references Pyykkonen, A.-J., Raikkonen, K., Tuomi, T., Eriksson, J. G., Groop, L., & Isomaa, B. (2011). Depressive Symptoms, Antidepressant Medication Use, and Insulin Resistance: The PPP-Botnia Study. Diabetes Care, 34(12), 2545-2547. doi:10.2337/dc11-0107 es_ES
dc.description.references Franzin, A., Sambo, F., & Di Camillo, B. (2016). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data. Bioinformatics, btw807. doi:10.1093/bioinformatics/btw807 es_ES
dc.description.references Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine, 162(1), 55. doi:10.7326/m14-0697 es_ES
dc.description.references Collins, D., Lee, J., Bobrovitz, N., Koshiaris, C., Ward, A., & Heneghan, C. (2016). Simple and adaptable R implementation of WHO/ISH cardiovascular risk charts for all epidemiological subregions of the world. F1000Research, 5, 2522. doi:10.12688/f1000research.9742.1 es_ES
dc.description.references Lindström, J., Ilanne-Parikka, P., Peltonen, M., Aunola, S., Eriksson, J. G., Hemiö, K., … Tuomilehto, J. (2006). Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet, 368(9548), 1673-1679. doi:10.1016/s0140-6736(06)69701-8 es_ES
dc.description.references Montonen, J., Knekt, P., Järvinen, R., Aromaa, A., & Reunanen, A. (2003). Whole-grain and fiber intake and the incidence of type 2 diabetes. The American Journal of Clinical Nutrition, 77(3), 622-629. doi:10.1093/ajcn/77.3.622 es_ES
dc.description.references Lin, C.-C., Li, C.-I., Liu, C.-S., Lin, W.-Y., Lin, C.-H., Yang, S.-Y., & Li, T.-C. (2017). Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Scientific Reports, 7(1). doi:10.1038/s41598-017-09243-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem