Mostrar el registro sencillo del ítem
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Argente-Pla, María | es_ES |
dc.contributor.author | Valdivieso Martinez, Bernardo | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.contributor.author | Merino-Torres, Juan Francisco | es_ES |
dc.date.accessioned | 2021-01-12T04:31:48Z | |
dc.date.available | 2021-01-12T04:31:48Z | |
dc.date.issued | 2019-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158677 | |
dc.description.abstract | [EN] Electronic health records and computational modelling have paved the way for the development of Type 2 Diabetes risk scores to identify subjects at high risk. Unfortunately, few risk scores have been externally validated, and their performance can be compromised when routine clinical data is used. The aim of this study was to assess the performance of well-established risk scores for Type 2 Diabetes using routinely collected clinical data and to quantify their impact on the decision making process of endocrinologists. We tested six risk models that have been validated in external cohorts, as opposed to model development, on electronic health records collected from 2008-2015 from a population of 10,730 subjects. Unavailable or missing data in electronic health records was imputed using an existing validated Bayesian Network. Risk scores were assessed on the basis of statistical performance to differentiate between subjects who developed diabetes and those who did not. Eight endocrinologists provided clinical recommendations based on the risk score output. Due to inaccuracies and discrepancies regarding the exact date of Type 2 Diabetes onset, 76 subjects from the initial population were eligible for the study. Risk scores were useful for identifying subjects who developed diabetes (Framingham risk score yielded a c-statistic of 85%), however, our findings suggest that electronic health records are not prepared to massively use this type of risk scores. Use of a Bayesian Network was key for completion of the risk estimation and did not affect the risk score calculation (p > 0.05). Risk score estimation did not have a significant effect on the clinical recommendation except for starting pharmacological treatment (p = 0.004) and dietary counselling (p = 0.039). Despite their potential use, electronic health records should be carefully analyzed before the massive use of Type 2 Diabetes risk scores for the identification of high-risk subjects, and subsequent targeting of preventive actions. | es_ES |
dc.description.sponsorship | MOSAIC project, funded by the European Commission Grant nr. FP7-ICT 600914. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Journal of Clinical Medicine | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Risk scores | es_ES |
dc.subject | Prediction | es_ES |
dc.subject | T2DM | es_ES |
dc.subject | Clinical data | es_ES |
dc.subject | Screening | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/jcm8010107 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/600914/EU/MOSAIC - MOdels and Simulation techniques for discovering diAbetes Influence faCtors/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Martinez-Millana, A.; Argente-Pla, M.; Valdivieso Martinez, B.; Traver Salcedo, V.; Merino-Torres, JF. (2019). Driving Type 2 Diabetes Risk Scores into Clinical Practice: Performance Analysis in Hospital Settings. Journal of Clinical Medicine. 8(1):1-19. https://doi.org/10.3390/jcm8010107 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/jcm8010107 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2077-0383 | es_ES |
dc.identifier.pmid | 30658456 | es_ES |
dc.identifier.pmcid | PMC6352264 | es_ES |
dc.relation.pasarela | S\376366 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Noble, D., Mathur, R., Dent, T., Meads, C., & Greenhalgh, T. (2011). Risk models and scores for type 2 diabetes: systematic review. BMJ, 343(nov28 1), d7163-d7163. doi:10.1136/bmj.d7163 | es_ES |
dc.description.references | Asghari, S., Courteau, J., Carpentier, A. C., & Vanasse, A. (2009). Optimal strategy to identify incidence of diagnostic of diabetes using administrative data. BMC Medical Research Methodology, 9(1). doi:10.1186/1471-2288-9-62 | es_ES |
dc.description.references | Chatterton, H., Younger, T., Fischer, A., & Khunti, K. (2012). Risk identification and interventions to prevent type 2 diabetes in adults at high risk: summary of NICE guidance. BMJ, 345(jul12 3), e4624-e4624. doi:10.1136/bmj.e4624 | es_ES |
dc.description.references | Vergouwe, Y., Steyerberg, E. W., Eijkemans, M. J. C., & Habbema, J. D. F. (2005). Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. Journal of Clinical Epidemiology, 58(5), 475-483. doi:10.1016/j.jclinepi.2004.06.017 | es_ES |
dc.description.references | Gray, L. J., & Khunti, K. (2013). Type 2 diabetes risk prediction—Do biomarkers increase detection? Diabetes Research and Clinical Practice, 101(3), 245-247. doi:10.1016/j.diabres.2013.07.008 | es_ES |
dc.description.references | Riley, R. D., Ensor, J., Snell, K. I. E., Debray, T. P. A., Altman, D. G., Moons, K. G. M., & Collins, G. S. (2016). External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ, i3140. doi:10.1136/bmj.i3140 | es_ES |
dc.description.references | Williams, R., Kontopantelis, E., Buchan, I., & Peek, N. (2017). Clinical code set engineering for reusing EHR data for research: A review. Journal of Biomedical Informatics, 70, 1-13. doi:10.1016/j.jbi.2017.04.010 | es_ES |
dc.description.references | Meigs, J. B., Shrader, P., Sullivan, L. M., McAteer, J. B., Fox, C. S., Dupuis, J., … Cupples, L. A. (2008). Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. New England Journal of Medicine, 359(21), 2208-2219. doi:10.1056/nejmoa0804742 | es_ES |
dc.description.references | Bobo, W. V., Cooper, W. O., Stein, C. M., Olfson, M., Mounsey, J., Daugherty, J., & Ray, W. A. (2012). Positive predictive value of a case definition for diabetes mellitus using automated administrative health data in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid study. BMC Medical Research Methodology, 12(1). doi:10.1186/1471-2288-12-128 | es_ES |
dc.description.references | Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338(mar17 2), b880-b880. doi:10.1136/bmj.b880 | es_ES |
dc.description.references | Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137-149. doi:10.1016/j.diabres.2013.11.002 | es_ES |
dc.description.references | Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. (2002). New England Journal of Medicine, 346(6), 393-403. doi:10.1056/nejmoa012512 | es_ES |
dc.description.references | Selvin, E., Wang, D., Lee, A. K., Bergenstal, R. M., & Coresh, J. (2017). Identifying Trends in Undiagnosed Diabetes in U.S. Adults by Using a Confirmatory Definition. Annals of Internal Medicine, 167(11), 769. doi:10.7326/m17-1272 | es_ES |
dc.description.references | Sattar, N., Preiss, D., Murray, H. M., Welsh, P., Buckley, B. M., de Craen, A. J., … Ford, I. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. The Lancet, 375(9716), 735-742. doi:10.1016/s0140-6736(09)61965-6 | es_ES |
dc.description.references | Paprott, R., Mühlenbruch, K., Mensink, G. B. M., Thiele, S., Schulze, M. B., Scheidt-Nave, C., & Heidemann, C. (2016). Validation of the German Diabetes Risk Score among the general adult population: findings from the German Health Interview and Examination Surveys. BMJ Open Diabetes Research & Care, 4(1), e000280. doi:10.1136/bmjdrc-2016-000280 | es_ES |
dc.description.references | Lindstrom, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. doi:10.2337/diacare.26.3.725 | es_ES |
dc.description.references | Hippisley-Cox, J., & Coupland, C. (2017). Development and validation of QDiabetes-2018 risk prediction algorithm to estimate future risk of type 2 diabetes: cohort study. BMJ, j5019. doi:10.1136/bmj.j5019 | es_ES |
dc.description.references | Martinez-Millana, A., Bayo-Monton, J.-L., Argente-Pla, M., Fernandez-Llatas, C., Merino-Torres, J., & Traver-Salcedo, V. (2017). Integration of Distributed Services and Hybrid Models Based on Process Choreography to Predict and Detect Type 2 Diabetes. Sensors, 18(2), 79. doi:10.3390/s18010079 | es_ES |
dc.description.references | (2016). 2. Classification and Diagnosis of Diabetes. Diabetes Care, 40(Supplement 1), S11-S24. doi:10.2337/dc17-s005 | es_ES |
dc.description.references | Valdes, S., Botas, P., Delgado, E., Alvarez, F., & Cadorniga, F. D. (2007). Population-Based Incidence of Type 2 Diabetes in Northern Spain: The Asturias Study. Diabetes Care, 30(9), 2258-2263. doi:10.2337/dc06-2461 | es_ES |
dc.description.references | Sambo, F., Di Camillo, B., Franzin, A., Facchinetti, A., Hakaste, L., Kravic, J., … Cobelli, C. (2015). A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318807 | es_ES |
dc.description.references | Buijsse, B., Simmons, R. K., Griffin, S. J., & Schulze, M. B. (2011). Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes. Epidemiologic Reviews, 33(1), 46-62. doi:10.1093/epirev/mxq019 | es_ES |
dc.description.references | ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. (2013). European Heart Journal, 34(39), 3035-3087. doi:10.1093/eurheartj/eht108 | es_ES |
dc.description.references | Reilly, B. M., & Evans, A. T. (2006). Translating Clinical Research into Clinical Practice: Impact of Using Prediction Rules To Make Decisions. Annals of Internal Medicine, 144(3), 201. doi:10.7326/0003-4819-144-3-200602070-00009 | es_ES |
dc.description.references | Collins, G. S., & Moons, K. G. M. (2012). Comparing risk prediction models. BMJ, 344(may24 2), e3186-e3186. doi:10.1136/bmj.e3186 | es_ES |
dc.description.references | Guasch-Ferré, M., Bulló, M., Costa, B., Martínez-Gonzalez, M. Á., Ibarrola-Jurado, N., … Estruch, R. (2012). A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk. PLoS ONE, 7(3), e33437. doi:10.1371/journal.pone.0033437 | es_ES |
dc.description.references | Alssema, M., Vistisen, D., Heymans, M. W., Nijpels, G., Glümer, C., … Dekker, J. M. (2010). The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia, 54(5), 1004-1012. doi:10.1007/s00125-010-1990-7 | es_ES |
dc.description.references | Schmidt, M. I., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., … Golden, S. H. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. doi:10.2337/diacare.28.8.2013 | es_ES |
dc.description.references | Mann, D. M., Bertoni, A. G., Shimbo, D., Carnethon, M. R., Chen, H., Jenny, N. S., & Muntner, P. (2010). Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort: The Multi-Ethnic Study of Atherosclerosis. American Journal of Epidemiology, 171(9), 980-988. doi:10.1093/aje/kwq030 | es_ES |
dc.description.references | Stern, M. P., Williams, K., & Haffner, S. M. (2002). Identification of Persons at High Risk for Type 2 Diabetes Mellitus: Do We Need the Oral Glucose Tolerance Test? Annals of Internal Medicine, 136(8), 575. doi:10.7326/0003-4819-136-8-200204160-00006 | es_ES |
dc.description.references | Abdul-Ghani, M. A., Abdul-Ghani, T., Stern, M. P., Karavic, J., Tuomi, T., Bo, I., … Groop, L. (2011). Two-Step Approach for the Prediction of Future Type 2 Diabetes Risk. Diabetes Care, 34(9), 2108-2112. doi:10.2337/dc10-2201 | es_ES |
dc.description.references | Collins, G. S., & Altman, D. G. (2011). External validation of QDSCORE® for predicting the 10-year risk of developing Type 2 diabetes. Diabetic Medicine, 28(5), 599-607. doi:10.1111/j.1464-5491.2011.03237.x | es_ES |
dc.description.references | Rahman, M., Simmons, R. K., Harding, A.-H., Wareham, N. J., & Griffin, S. J. (2008). A simple risk score identifies individuals at high risk of developing Type 2 diabetes: a prospective cohort study. Family Practice, 25(3), 191-196. doi:10.1093/fampra/cmn024 | es_ES |
dc.description.references | Talmud, P. J., Hingorani, A. D., Cooper, J. A., Marmot, M. G., Brunner, E. J., Kumari, M., … Humphries, S. E. (2010). Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ, 340(jan14 1), b4838-b4838. doi:10.1136/bmj.b4838 | es_ES |
dc.description.references | Rubin, D. B. (1996). Multiple Imputation after 18+ Years. Journal of the American Statistical Association, 91(434), 473-489. doi:10.1080/01621459.1996.10476908 | es_ES |
dc.description.references | Pyykkonen, A.-J., Raikkonen, K., Tuomi, T., Eriksson, J. G., Groop, L., & Isomaa, B. (2011). Depressive Symptoms, Antidepressant Medication Use, and Insulin Resistance: The PPP-Botnia Study. Diabetes Care, 34(12), 2545-2547. doi:10.2337/dc11-0107 | es_ES |
dc.description.references | Franzin, A., Sambo, F., & Di Camillo, B. (2016). bnstruct: an R package for Bayesian Network structure learning in the presence of missing data. Bioinformatics, btw807. doi:10.1093/bioinformatics/btw807 | es_ES |
dc.description.references | Collins, G. S., Reitsma, J. B., Altman, D. G., & Moons, K. G. M. (2015). Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement. Annals of Internal Medicine, 162(1), 55. doi:10.7326/m14-0697 | es_ES |
dc.description.references | Collins, D., Lee, J., Bobrovitz, N., Koshiaris, C., Ward, A., & Heneghan, C. (2016). Simple and adaptable R implementation of WHO/ISH cardiovascular risk charts for all epidemiological subregions of the world. F1000Research, 5, 2522. doi:10.12688/f1000research.9742.1 | es_ES |
dc.description.references | Lindström, J., Ilanne-Parikka, P., Peltonen, M., Aunola, S., Eriksson, J. G., Hemiö, K., … Tuomilehto, J. (2006). Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. The Lancet, 368(9548), 1673-1679. doi:10.1016/s0140-6736(06)69701-8 | es_ES |
dc.description.references | Montonen, J., Knekt, P., Järvinen, R., Aromaa, A., & Reunanen, A. (2003). Whole-grain and fiber intake and the incidence of type 2 diabetes. The American Journal of Clinical Nutrition, 77(3), 622-629. doi:10.1093/ajcn/77.3.622 | es_ES |
dc.description.references | Lin, C.-C., Li, C.-I., Liu, C.-S., Lin, W.-Y., Lin, C.-H., Yang, S.-Y., & Li, T.-C. (2017). Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Scientific Reports, 7(1). doi:10.1038/s41598-017-09243-9 | es_ES |