- -

Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke

Mostrar el registro completo del ítem

Latorre, J.; Colomer, C.; Alcañiz Raya, ML.; Llorens Rodríguez, R. (2019). Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. Journal of NeuroEngineering and Rehabilitation. 16:1-11. https://doi.org/10.1186/s12984-019-0568-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158837

Ficheros en el ítem

Metadatos del ítem

Título: Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke
Autor: Latorre, Jorge Colomer, Carolina Alcañiz Raya, Mariano Luis Llorens Rodríguez, Roberto
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Fecha difusión:
Resumen:
[EN] Background: Gait is usually assessed by clinical tests, which may have poor accuracy and be biased, or instrumented systems, which potentially solve these limitations at the cost of being time-consuming and expensive. ...[+]
Palabras clave: Gait , Stroke , Biomedical technology assessment , Reliability and validity , Fall risk , Kinect v2
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of NeuroEngineering and Rehabilitation. (issn: 1743-0003 )
DOI: 10.1186/s12984-019-0568-y
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12984-019-0568-y
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/Fundació La Marató de TV3//201701-10/
Agradecimientos:
This study was funded by project VALORA, grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain), and grant "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion ...[+]
Tipo: Artículo

References

Balaban B, Tok F. Gait disturbances in patients with stroke. PM&R. 2014;6(7):635–42.

Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil. 2001;7(4):1–18.

Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress Neurobiol. 2004;73:61–72. [+]
Balaban B, Tok F. Gait disturbances in patients with stroke. PM&R. 2014;6(7):635–42.

Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil. 2001;7(4):1–18.

Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress Neurobiol. 2004;73:61–72.

An S, Lee Y, Shin H, Lee G. Gait velocity and walking distance to predict community walking after stroke. Nurs Health Sci. 2015;17(4):533–8.

Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci. 2016;47:197–208.

Kobsar D, Olson C, Paranjape R, Hadjistavropoulos T, Barden JM. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture. 2014;39(1):553–7.

Almarwani M, Perera S, VanSwearingen JM, Sparto PJ, Brach JS. The test–retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait Posture. 2016;44:94–9.

Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A. Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study. J Neurol Neurosurg Psychiatry. 2003;74(3):317–21

Lipskaya-Velikovsky L, Zeilig G, Weingarden H, Rozental-Iluz C, Rand D. Executive functioning and daily living of individuals with chronic stroke. Int J Rehabil Res. 2018;41(2):122–7.

Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–42.

Sudarsky L. Gait disorders: prevalence, morbidity, and etiology. Adv Neurol. 2001;87:111–7.

Salbach NM, O’Brien KK, Brooks D, Irvin E, Martino R, Takhar P, et al. Reference values for standardized tests of walking speed and distance: a systematic review. Gait Posture. 2015;41(2):341–60.

Mancini M, King L, Salarian A, et al. Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. 2011. p. 007.

Menz HB, Latt MD, Tiedemann A, Kwan MMS, Lord SR. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5.

Hansen AH, Childress DS, Meier MR. A simple method for determination of gait events. J Biomech. 2002;35(1):135–8.

Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE Journal of Biomedical and Health Informatics; 2016.

Sprager S, Juric M. Inertial sensor-based gait recognition: a review. Sensors. 2015;15(9):22089–127.

Lloréns R, Noé E, Naranjo V, Borrego A, Latorre J, Alcañiz M. Tracking Systems for Virtual Rehabilitation: objective performance vs. Subjective Experience A Practical Scenario. Sensors. 2015;15(3):6586–606.

Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A. Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review. Bosn J Basic Med Sci. 2012;12(3):193.

Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gait analysis. Phys Ther. 1985;65(7):1027–33.

Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–5.

Springer S, Yogev SG. Validity of the Kinect for gait assessment: a focused review. Sensors. 2016;16(2):194.

Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, McGaw R, et al. Reliability and concurrent validity of the Microsoft Xbox one Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3.

Gonzalez-Jorge H, Rodríguez-Gonzálvez P, Martínez-Sánchez J, González-Aguilera D, Arias P, Gesto M, et al. Metrological comparison between Kinect i and Kinect II sensors. Meas J Int Meas Confed. 2015;70:21–6.

Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38(9):952–8.

Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, et al. Gait assessment using the Microsoft Xbox one Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48(10):2166–70.

Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS One. 2015;10(10):e0139913.

Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83.

Auvinet E, Multon F, Aubin CE, Meunier J, Raison M. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture. 2015;41(2):722–5.

Dolatabadi E, Taati B, Mihailidis A. An automated classification of pathological gait using unobtrusive sensing technology. IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2336–46.

Latorre J, Llorens R, Colomer C, Alcañiz M. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. J Biomech. 2018;72:268–73.

Green J, Forster A, Young J. Reliability of gait speed measured by a timed walking test in patients one year after stroke. Clin Rehabil. 2002;16(3):306–14.

Romero M, Sánchez A, Marín C, Navarro MD, Ferri J, Noé E. Clinical usefulness of the Spanish version of the Mississippi aphasia screening test (MASTsp): validation in stroke patients. Neurología. 2012;27(4):216–24.

Kinect hardware [Internet]. [cited 2017 Jul 19]. Available from: https://developer.microsoft.com/en-us/windows/kinect/hardware

Latorre J, Lloréns R, Noé. E. http://www.gait.upv.es [Internet]. 2018. Available from: http://www.gait.upv.es

Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7.

Shumway-Cook A, Woollacott M. Motor control: theory and practical applications. 2nd ed. Int J Peadiatric. 1995.

Jonsdottir J, Cattaneo D. Reliability and validity of the dynamic gait index in persons with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1410–5.

McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744.

Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82(1):9–13.

Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 83 Suppl 2:S7–11.

Evans JD. Straightforward statistics for the behavioral sciences. 1st ed. Brooks/Cole Pub. Co; 1996.

Llorens R, Latorre J, Noe E, Keshner EA. A low-cost Wii Balance Board™-based posturography system: An efficacy study with healthy subjects and individuals with stroke. In: International Conference on Virtual Rehabilitation, ICVR. 2015. 80–5.

Simpson LA, Miller WC, Eng JJ. Effect of Stroke on Fall Rate, Location and Predictors: A Prospective Comparison of Older Adults with and without Stroke. PLoS One. 2011;6(4):e19431.

Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74.

Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59.

Bohannon RW, Williams Andrews A. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–9.

Perry J. Gait Analysis - Normal and Pathological Function. Book by SLACKIncorporated; 1992. p. 1–19.

Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev. 1993;30(2):210–23.

Wang C-Y, Lin Y-H, Chen T-R, Liu M-H, Chen Y-C. Gait speed measure: the effect of different measuring distances and the inclusion and exclusion of acceleration and deceleration. Percept Mot Skills. 2012;114(2):469–78.

Murray MP, Kory RC, Clarkson BH, Sepic SB. Comparison of free and fast speed walking patterns of normal men. Am J Phys Med. 1966;45(1):8–23.

Samson MM, Crowe A, de Vreede PL, Dessens JAG, Duursma SA, HJJ V. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res. 2001;13(1):16–21.

Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–6.

Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43.

Boudarham J, Roche N, Pradon D, Bonnyaud C, Bensmail D, Zory R. Variations in kinematics during clinical gait analysis in stroke patients. PLoS One. 2013;8(6):e66421.

Chisholm AE, Makepeace S, Inness EL, Perry SD, McIlroy WE, Mansfield A. Spatial-temporal gait variability Poststroke: variations in measurement and implications for measuring change. Arch Phys Med Rehabil. 2014;95(7):1335–41.

Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4(2):136–48.

Vernon S, Paterson K, Bower K, Mcginley J, Miller K, Pua Y, et al. Quantifying individual components of the timed up and go using the Kinect in people living with stroke. Neurorehabil Neural Repair. 2015;29(1):48–53.

Clark RA, Vernon S, Mentiplay BF, Miller KJ, Mcginley JL, Pua YH, et al. Instrumenting gait assessment using the Kinect in people living with stroke: reliability and association with balance tests. J Neuroeng Rehabil. 2012;12:15.

Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41(9):2021–5.

McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil. 2001;82(3):419–25.

Greenberg M, Gronley J, Perry J, Lawthwaite R. Concurrent Validity of Observational Gait Analysis Using the Vicon Motion Analysis System. Gait Posture. 1996;4:167–8.

Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Disabil Rehabil. 1990;12(1):6–9.

Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther. 1999;79(12):1122–33.

Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL. Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. Physiother Theory Pract. 2014;30(3):183–8.

Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–9.

Meldrum D, Shouldice C, Conroy R, Jones K, Forward M. Test–retest reliability of three dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with bland and Altman plots. Gait Posture. 2014;39(1):265–71.

Fulk GD, Echternach JL. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J Neurol Phys Ther. 2008;32:8–13.

Bohannon RW, Andrews AW, Glenney SS. Minimal clinically important difference for comfortable speed as a measure of gait performance in patients undergoing inpatient rehabilitation after stroke. J Phys Ther Sci. 2013;25:1223–25.

Tilson JK, Sullivan KJ, Cen SY, Rose DK, Koradia CH, Azen SP, et al. Meaningful gait speed improvement during the first 60 days Poststroke: minimal clinically important difference. Phys Ther. 2010;90(2):196–208. 

Fulk GD, Ludwig M, Dunning K, Golden S, Boyne P, West T. Estimating clinically important change in gait speed in people with stroke undergoing outpatient rehabilitation. J Neurol Phys Ther. 2011;35(2):82–89.

Breisinger TP, Skidmore ER, Niyonkuru C, Terhorst L, Campbell GB. The stroke assessment of fall risk (SAFR): predictive validity in inpatient stroke rehabilitation. Clin Rehabil. 2014;28(12):1218–24.

Ashburn A, Hyndman D, Pickering R, Yardley L, Harris S. Predicting people with stroke at risk of falls. Age Ageing. 2008;37(3):270–6.

Bergamini E, Iosa M, Belluscio V, Morone G, Tramontano M, Vannozzi G. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. J Biomech. 2017;61:208–15.

Colagiorgio P, Romano F, Sardi F, Moraschini M, Sozzi A, Bejor M, et al. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2014. 3500–3503.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem