- -

Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Latorre, Jorge es_ES
dc.contributor.author Colomer, Carolina es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Llorens Rodríguez, Roberto es_ES
dc.date.accessioned 2021-01-12T21:02:28Z
dc.date.available 2021-01-12T21:02:28Z
dc.date.issued 2019-07-26 es_ES
dc.identifier.issn 1743-0003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158837
dc.description.abstract [EN] Background: Gait is usually assessed by clinical tests, which may have poor accuracy and be biased, or instrumented systems, which potentially solve these limitations at the cost of being time-consuming and expensive. The different versions of the Microsoft Kinect have enabled human motion tracking without using wearable sensors at a low-cost and with acceptable reliability. This study aims: First, to determine the sensitivity of an open-access Kinect v2-based gait analysis system to motor disability and aging; Second, to determine its concurrent validity with standardized clinical tests in individuals with stroke; Third, to quantify its inter and intra-rater reliability, standard error of measurement, minimal detectable change; And, finally, to investigate its ability to identify fall risk after stroke. Methods: The most widely used spatiotemporal and kinematic gait parameters of 82 individuals post-stroke and 355 healthy subjects were estimated with the Kinect v2-based system. In addition, participants with stroke were assessed with the Dynamic Gait Index, the 1-min Walking Test, and the 10-m Walking Test. Results: The system successfully characterized the performance of both groups. Significant concurrent validity with correlations of variable strength was detected between all clinical tests and gait measures. Excellent inter and intra-rater reliability was evidenced for almost all measures. Minimal detectable change was variable, with poorer results for kinematic parameters. Almost all gait parameters proved to identify fall risk. Conclusions: Results suggest that although its limited sensitivity to kinematic parameters, the Kinect v2-based gait analysis could be used as a low-cost alternative to laboratory-grade systems to complement gait assessment in clinical settings. es_ES
dc.description.sponsorship This study was funded by project VALORA, grant 201701-10 of the Fundacio la Marato de la TV3 (Barcelona, Spain), and grant "Ayuda a Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia" (Valencia, Spain). es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof Journal of NeuroEngineering and Rehabilitation es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gait es_ES
dc.subject Stroke es_ES
dc.subject Biomedical technology assessment es_ES
dc.subject Reliability and validity es_ES
dc.subject Fall risk es_ES
dc.subject Kinect v2 es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12984-019-0568-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació La Marató de TV3//201701-10/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Latorre, J.; Colomer, C.; Alcañiz Raya, ML.; Llorens Rodríguez, R. (2019). Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. Journal of NeuroEngineering and Rehabilitation. 16:1-11. https://doi.org/10.1186/s12984-019-0568-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12984-019-0568-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.pasarela S\393090 es_ES
dc.contributor.funder Fundació La Marató de TV3 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Balaban B, Tok F. Gait disturbances in patients with stroke. PM&R. 2014;6(7):635–42. es_ES
dc.description.references Woolley SM. Characteristics of gait in hemiplegia. Top Stroke Rehabil. 2001;7(4):1–18. es_ES
dc.description.references Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Progress Neurobiol. 2004;73:61–72. es_ES
dc.description.references An S, Lee Y, Shin H, Lee G. Gait velocity and walking distance to predict community walking after stroke. Nurs Health Sci. 2015;17(4):533–8. es_ES
dc.description.references Moon Y, Sung J, An R, Hernandez ME, Sosnoff JJ. Gait variability in people with neurological disorders: a systematic review and meta-analysis. Hum Mov Sci. 2016;47:197–208. es_ES
dc.description.references Kobsar D, Olson C, Paranjape R, Hadjistavropoulos T, Barden JM. Evaluation of age-related differences in the stride-to-stride fluctuations, regularity and symmetry of gait using a waist-mounted tri-axial accelerometer. Gait Posture. 2014;39(1):553–7. es_ES
dc.description.references Almarwani M, Perera S, VanSwearingen JM, Sparto PJ, Brach JS. The test–retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait Posture. 2016;44:94–9. es_ES
dc.description.references Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A. Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study. J Neurol Neurosurg Psychiatry. 2003;74(3):317–21 es_ES
dc.description.references Lipskaya-Velikovsky L, Zeilig G, Weingarden H, Rozental-Iluz C, Rand D. Executive functioning and daily living of individuals with chronic stroke. Int J Rehabil Res. 2018;41(2):122–7. es_ES
dc.description.references Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabil. 2002;83(8):1035–42. es_ES
dc.description.references Sudarsky L. Gait disorders: prevalence, morbidity, and etiology. Adv Neurol. 2001;87:111–7. es_ES
dc.description.references Salbach NM, O’Brien KK, Brooks D, Irvin E, Martino R, Takhar P, et al. Reference values for standardized tests of walking speed and distance: a systematic review. Gait Posture. 2015;41(2):341–60. es_ES
dc.description.references Mancini M, King L, Salarian A, et al. Mobility lab to assess balance and gait with synchronized body-worn sensors. J Bioeng Biomed Sci. 2011. p. 007. es_ES
dc.description.references Menz HB, Latt MD, Tiedemann A, Kwan MMS, Lord SR. Reliability of the GAITRite® walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5. es_ES
dc.description.references Hansen AH, Childress DS, Meier MR. A simple method for determination of gait events. J Biomech. 2002;35(1):135–8. es_ES
dc.description.references Chen S, Lach J, Lo B, Yang GZ. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE Journal of Biomedical and Health Informatics; 2016. es_ES
dc.description.references Sprager S, Juric M. Inertial sensor-based gait recognition: a review. Sensors. 2015;15(9):22089–127. es_ES
dc.description.references Lloréns R, Noé E, Naranjo V, Borrego A, Latorre J, Alcañiz M. Tracking Systems for Virtual Rehabilitation: objective performance vs. Subjective Experience A Practical Scenario. Sensors. 2015;15(3):6586–606. es_ES
dc.description.references Ali A, Sundaraj K, Ahmad B, Ahamed N, Islam A. Gait disorder rehabilitation using vision and non-vision based sensors: a systematic review. Bosn J Basic Med Sci. 2012;12(3):193. es_ES
dc.description.references Krebs DE, Edelstein JE, Fishman S. Reliability of observational kinematic gait analysis. Phys Ther. 1985;65(7):1027–33. es_ES
dc.description.references Clark RA, Bower KJ, Mentiplay BF, Paterson K, Pua YH. Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal gait variables. J Biomech. 2013;46(15):2722–5. es_ES
dc.description.references Springer S, Yogev SG. Validity of the Kinect for gait assessment: a focused review. Sensors. 2016;16(2):194. es_ES
dc.description.references Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, McGaw R, et al. Reliability and concurrent validity of the Microsoft Xbox one Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42(2):210–3. es_ES
dc.description.references Gonzalez-Jorge H, Rodríguez-Gonzálvez P, Martínez-Sánchez J, González-Aguilera D, Arias P, Gesto M, et al. Metrological comparison between Kinect i and Kinect II sensors. Meas J Int Meas Confed. 2015;70:21–6. es_ES
dc.description.references Dolatabadi E, Taati B, Mihailidis A. Concurrent validity of the Microsoft Kinect for windows v2 for measuring spatiotemporal gait parameters. Med Eng Phys. 2016;38(9):952–8. es_ES
dc.description.references Mentiplay BF, Perraton LG, Bower KJ, Pua YH, McGaw R, Heywood S, et al. Gait assessment using the Microsoft Xbox one Kinect: concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J Biomech. 2015;48(10):2166–70. es_ES
dc.description.references Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS One. 2015;10(10):e0139913. es_ES
dc.description.references Eltoukhy M, Oh J, Kuenze C, Signorile J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture. 2017;51:77–83. es_ES
dc.description.references Auvinet E, Multon F, Aubin CE, Meunier J, Raison M. Detection of gait cycles in treadmill walking using a Kinect. Gait Posture. 2015;41(2):722–5. es_ES
dc.description.references Dolatabadi E, Taati B, Mihailidis A. An automated classification of pathological gait using unobtrusive sensing technology. IEEE Trans Neural Syst Rehabil Eng. 2017;25(12):2336–46. es_ES
dc.description.references Latorre J, Llorens R, Colomer C, Alcañiz M. Reliability and comparison of Kinect-based methods for estimating spatiotemporal gait parameters of healthy and post-stroke individuals. J Biomech. 2018;72:268–73. es_ES
dc.description.references Green J, Forster A, Young J. Reliability of gait speed measured by a timed walking test in patients one year after stroke. Clin Rehabil. 2002;16(3):306–14. es_ES
dc.description.references Romero M, Sánchez A, Marín C, Navarro MD, Ferri J, Noé E. Clinical usefulness of the Spanish version of the Mississippi aphasia screening test (MASTsp): validation in stroke patients. Neurología. 2012;27(4):216–24. es_ES
dc.description.references Kinect hardware [Internet]. [cited 2017 Jul 19]. Available from: https://developer.microsoft.com/en-us/windows/kinect/hardware es_ES
dc.description.references Latorre J, Lloréns R, Noé. E. http://www.gait.upv.es [Internet]. 2018. Available from: http://www.gait.upv.es es_ES
dc.description.references Eltoukhy M, Kuenze C, Oh J, Jacopetti M, Wooten S, Signorile J. Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson’s disease. Med Eng Phys. 2017;44:1–7. es_ES
dc.description.references Shumway-Cook A, Woollacott M. Motor control: theory and practical applications. 2nd ed. Int J Peadiatric. 1995. es_ES
dc.description.references Jonsdottir J, Cattaneo D. Reliability and validity of the dynamic gait index in persons with chronic stroke. Arch Phys Med Rehabil. 2007;88(11):1410–5. es_ES
dc.description.references McDowell BC, Kerr C, Parkes J, Cosgrove A. Validity of a 1 minute walk test for children with cerebral palsy. Dev Med Child Neurol. 2005;47(11):744. es_ES
dc.description.references Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82(1):9–13. es_ES
dc.description.references Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 83 Suppl 2:S7–11. es_ES
dc.description.references Evans JD. Straightforward statistics for the behavioral sciences. 1st ed. Brooks/Cole Pub. Co; 1996. es_ES
dc.description.references Llorens R, Latorre J, Noe E, Keshner EA. A low-cost Wii Balance Board™-based posturography system: An efficacy study with healthy subjects and individuals with stroke. In: International Conference on Virtual Rehabilitation, ICVR. 2015. 80–5. es_ES
dc.description.references Simpson LA, Miller WC, Eng JJ. Effect of Stroke on Fall Rate, Location and Predictors: A Prospective Comparison of Older Adults with and without Stroke. PLoS One. 2011;6(4):e19431. es_ES
dc.description.references Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27(8):861–74. es_ES
dc.description.references Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30(7):1145–59. es_ES
dc.description.references Bohannon RW, Williams Andrews A. Normal walking speed: A descriptive meta-analysis. Physiotherapy. 2011;97:182–9. es_ES
dc.description.references Perry J. Gait Analysis - Normal and Pathological Function. Book by SLACKIncorporated; 1992. p. 1–19. es_ES
dc.description.references Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev. 1993;30(2):210–23. es_ES
dc.description.references Wang C-Y, Lin Y-H, Chen T-R, Liu M-H, Chen Y-C. Gait speed measure: the effect of different measuring distances and the inclusion and exclusion of acceleration and deceleration. Percept Mot Skills. 2012;114(2):469–78. es_ES
dc.description.references Murray MP, Kory RC, Clarkson BH, Sepic SB. Comparison of free and fast speed walking patterns of normal men. Am J Phys Med. 1966;45(1):8–23. es_ES
dc.description.references Samson MM, Crowe A, de Vreede PL, Dessens JAG, Duursma SA, HJJ V. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin Exp Res. 2001;13(1):16–21. es_ES
dc.description.references Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–6. es_ES
dc.description.references Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43. es_ES
dc.description.references Boudarham J, Roche N, Pradon D, Bonnyaud C, Bensmail D, Zory R. Variations in kinematics during clinical gait analysis in stroke patients. PLoS One. 2013;8(6):e66421. es_ES
dc.description.references Chisholm AE, Makepeace S, Inness EL, Perry SD, McIlroy WE, Mansfield A. Spatial-temporal gait variability Poststroke: variations in measurement and implications for measuring change. Arch Phys Med Rehabil. 2014;95(7):1335–41. es_ES
dc.description.references Olney SJ, Richards C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4(2):136–48. es_ES
dc.description.references Vernon S, Paterson K, Bower K, Mcginley J, Miller K, Pua Y, et al. Quantifying individual components of the timed up and go using the Kinect in people living with stroke. Neurorehabil Neural Repair. 2015;29(1):48–53. es_ES
dc.description.references Clark RA, Vernon S, Mentiplay BF, Miller KJ, Mcginley JL, Pua YH, et al. Instrumenting gait assessment using the Kinect in people living with stroke: reliability and association with balance tests. J Neuroeng Rehabil. 2012;12:15. es_ES
dc.description.references Lin J-H, Hsu M-J, Hsu H-W, Wu H-C, Hsieh C-L. Psychometric comparisons of 3 functional ambulation measures for patients with stroke. Stroke. 2010;41(9):2021–5. es_ES
dc.description.references McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil. 2001;82(3):419–25. es_ES
dc.description.references Greenberg M, Gronley J, Perry J, Lawthwaite R. Concurrent Validity of Observational Gait Analysis Using the Vicon Motion Analysis System. Gait Posture. 1996;4:167–8. es_ES
dc.description.references Collen FM, Wade DT, Bradshaw CM. Mobility after stroke: reliability of measures of impairment and disability. Disabil Rehabil. 1990;12(1):6–9. es_ES
dc.description.references Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory functional ambulation profile. Phys Ther. 1999;79(12):1122–33. es_ES
dc.description.references Peters DM, Middleton A, Donley JW, Blanck EL, Fritz SL. Concurrent validity of walking speed values calculated via the GAITRite electronic walkway and 3 meter walk test in the chronic stroke population. Physiother Theory Pract. 2014;30(3):183–8. es_ES
dc.description.references Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54(5):743–9. es_ES
dc.description.references Meldrum D, Shouldice C, Conroy R, Jones K, Forward M. Test–retest reliability of three dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with bland and Altman plots. Gait Posture. 2014;39(1):265–71. es_ES
dc.description.references Fulk GD, Echternach JL. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J Neurol Phys Ther. 2008;32:8–13. es_ES
dc.description.references Bohannon RW, Andrews AW, Glenney SS. Minimal clinically important difference for comfortable speed as a measure of gait performance in patients undergoing inpatient rehabilitation after stroke. J Phys Ther Sci. 2013;25:1223–25. es_ES
dc.description.references Tilson JK, Sullivan KJ, Cen SY, Rose DK, Koradia CH, Azen SP, et al. Meaningful gait speed improvement during the first 60 days Poststroke: minimal clinically important difference. Phys Ther. 2010;90(2):196–208.  es_ES
dc.description.references Fulk GD, Ludwig M, Dunning K, Golden S, Boyne P, West T. Estimating clinically important change in gait speed in people with stroke undergoing outpatient rehabilitation. J Neurol Phys Ther. 2011;35(2):82–89. es_ES
dc.description.references Breisinger TP, Skidmore ER, Niyonkuru C, Terhorst L, Campbell GB. The stroke assessment of fall risk (SAFR): predictive validity in inpatient stroke rehabilitation. Clin Rehabil. 2014;28(12):1218–24. es_ES
dc.description.references Ashburn A, Hyndman D, Pickering R, Yardley L, Harris S. Predicting people with stroke at risk of falls. Age Ageing. 2008;37(3):270–6. es_ES
dc.description.references Bergamini E, Iosa M, Belluscio V, Morone G, Tramontano M, Vannozzi G. Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. J Biomech. 2017;61:208–15. es_ES
dc.description.references Colagiorgio P, Romano F, Sardi F, Moraschini M, Sozzi A, Bejor M, et al. Affordable, automatic quantitative fall risk assessment based on clinical balance scales and Kinect data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2014. 3500–3503. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem