Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648. https://doi.org/10.1038/27094
Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004
Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858. https://doi.org/10.1079/PNS2003301
[+]
Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648. https://doi.org/10.1038/27094
Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004
Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858. https://doi.org/10.1079/PNS2003301
Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576. https://doi.org/10.1016/j.bone.2009.07.082
Honda Y, Fitzsimmons RJ, Baylink DJ, Mohan S (1995) Effects of extracellular calcium on insulin-like growth factor II in human bone cells. J Bone Miner Res 10:1660–1665. https://doi.org/10.1002/jbmr.5650101108
Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718. https://doi.org/10.1007/s00441-014-1918-5
Habibovic P, Barralet JE (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 32:3013–3026. https://doi.org/10.1016/j.actbio.2011.03.027
Oshiro Junior J, Paiva Abuçafy M, Berbel Manaia E et al (2016) Drug delivery systems obtained from silica based organic-inorganic hybrids. Polymers (Basel) 8:91. https://doi.org/10.3390/polym8040091
Jones JR (2015) Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019
Romero-Gavilán F, Barros-Silva S, García-Cañadas J et al (2016) Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J Non Cryst Solids 453:66–73. https://doi.org/10.1016/j.jnoncrysol.2016.09.026
Martínez-Ibáñez M, Juan-Díaz MJ, Lara-Saez I et al (2016) Biological characterization of a new silicon based coating developed for dental implants. J Mater Sci Mater Med 27:80. https://doi.org/10.1007/s10856-016-5690-9
Martínez-Ibáñez M, Murthy NS, Mao Y et al (2018) Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res Part B Appl Biomater 106:1138–1147. https://doi.org/10.1002/jbm.b.33889
Salinas AJ, Merino JM, Babonneau F et al (2007) Microstructure and Macroscopic Properties of Bioactive CaO–SiO2–PDMS Hybrids. J Biomed Mater Res B Appl Biomater 81B:274–282. https://doi.org/10.1002/jbm.b.30663
Almeida JC, Wacha A, Gomes PS et al (2016) A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Mater Sci Eng, C 62:429–438. https://doi.org/10.1016/j.msec.2016.01.083
Valliant EM, Romer F, Wang D et al (2013) Bioactivity in silica/poly(c-glutamic acid) sol-gel hybrids through calcium chelation. Acta Biomater 9:7662–7671. https://doi.org/10.1016/j.actbio.2013.04.037
Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials 26:485–493. https://doi.org/10.1016/j.biomaterials.2004.02.056
Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111. https://doi.org/10.1080/08927014.2016.1259414
Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039
Chen Z, Klein T, Murray RZ et al (2015) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304–321. https://doi.org/10.1016/j.mattod.2015.11.004
Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I et al (2018) Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 23:459–470. https://doi.org/10.1007/s00775-018-1553-9
Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689. https://doi.org/10.1080/08927014.2017.1356289
Araújo-Gomes N, Romero-Gavilán F, Sanchez-Pérez AM et al (2018) Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res Part B Appl Biomater 106:1477–1485. https://doi.org/10.1002/jbm.b.33954
Romero-Gavilan F, Araújo-Gomes N, Sánchez-Pérez AM et al (2017) Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surfaces B Biointerfaces 162:316–325. https://doi.org/10.1016/j.colsurfb.2017.11.072
Shiu HT, Goss B, Lutton C et al (2014) Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev 20:697–712. https://doi.org/10.1089/ten.teb.2013.0709
Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:3–8. https://doi.org/10.1038/NMETH.1322
Dvorak MM, Riccardi D (2004) Ca2 + as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014
Cho NH, Seong SY (2009) Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology 128:479–486. https://doi.org/10.1111/j.1365-2567.2008.03002.x
Meerasa A, Huang JG, Gu FX (2013) Human serum lipoproteins influence protein deposition patterns on nanoparticle surfaces. ACS Appl Mater Interfaces 5:489–493. https://doi.org/10.1021/am302554q
Baitsch D, Bock HH, Engel T et al (2011) Apolipoprotein e induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol 31:1160–1168. https://doi.org/10.1161/ATVBAHA.111.222745
Niemeier A, Schinke T, Heeren J, Amling M (2012) The role of Apolipoprotein E in bone metabolism. Bone 50:518–524. https://doi.org/10.1016/j.bone.2011.07.015
Kim WS, Kim HJ, Lee ZH et al (2013) Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Exp Cell Res 319:436–446. https://doi.org/10.1016/j.yexcr.2012.12.004
Emsley J, White HE, O’Hara BP et al (1994) Structure of pentameric human serum amyloid P component. Nature 367:338–345
Poulsen ET, Pedersen KW, Marzeda AM, Enghild JJ (2017) Serum amyloid P component (SAP) interactome in human plasma containing physiological calcium levels. Biochemistry 56:896–902. https://doi.org/10.1021/acs.biochem.6b01027
Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427. https://doi.org/10.1016/j.jhep.2016.02.029
Mollnes TE, Kirschfink M (2006) Strategies of therapeutic complement inhibition. Mol Immunol 43:107–121. https://doi.org/10.1016/j.molimm.2005.06.014
Gessmann J, Seybold D, Peter E et al (2013) Plasma clots gelled by different amounts of calcium for stem cell delivery. Langenbeck’s Arch Surg 398:161–167. https://doi.org/10.1007/s00423-012-1015-8
Scheraga HA (2004) The thrombin-fibrinogen interaction. Biophys Chem 112:117–130. https://doi.org/10.1016/j.bpc.2004.07.011
Chu AJ (2010) Blood coagulation as an intrinsic pathway for proinflammation: a mini review. Inflamm Allergy Drug Targets 9:32–44. https://doi.org/10.2174/187152810791292890
Suleiman L, Négrier C, Boukerche H (2013) Protein S: a multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 88:637–654. https://doi.org/10.1016/j.critrevonc.2013.07.004
Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949. https://doi.org/10.1056/NEJMra0801082
Biltoft D, Gram JB, Larsen A et al (2017) Fast form alpha-2-macroglobulin—a marker for protease activation in plasma exposed to artificial surfaces. Clin Biochem 50:1203–1208. https://doi.org/10.1016/j.clinbiochem.2017.09.002
Cvirn G, Gallistl S, Koestenberger M et al (2002) Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thromb Res 105:433–439. https://doi.org/10.1016/S0049-3848(02)00042-7
Vogler EA, Siedlecki CA (2009) Contact activation of blood-plasma coagulation. Biomaterials 30:1857–1869. https://doi.org/10.1016/j.biomaterials.2008.12.041
Leavesley DI, Kashyap AS, Croll T et al (2013) Vitronectin—master controller or micromanager? IUBMB Life 65:807–818. https://doi.org/10.1002/iub.1203
Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357. https://doi.org/10.1016/j.bbrc.2006.06.110
Cacchioli A, Ravanetti F, Bagno A et al (2009) Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: a pilot in vivo study on rabbits. Tissue Eng Part A 15:2017–2026. https://doi.org/10.1089/ten.tea.2008.0542
[-]