Mostrar el registro sencillo del ítem
dc.contributor.author | Romero-Gavilán, F. | es_ES |
dc.contributor.author | Araújo-Gomes, Nuno | es_ES |
dc.contributor.author | Cerqueira, A. | es_ES |
dc.contributor.author | García-Arnáez, I. | es_ES |
dc.contributor.author | Martínez-Ramos, Cristina | es_ES |
dc.contributor.author | Azkargorta, M. | es_ES |
dc.contributor.author | Iloro, I. | es_ES |
dc.contributor.author | Elortza, F. | es_ES |
dc.contributor.author | Gurruchaga, M. | es_ES |
dc.contributor.author | Suay, J. | es_ES |
dc.contributor.author | Goñi, I. | es_ES |
dc.date.accessioned | 2021-01-12T21:02:38Z | |
dc.date.available | 2021-01-12T21:02:38Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 0949-8257 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158840 | |
dc.description.abstract | [EN] Calcium is an element widely used in the development of biomaterials for bone tissue engineering as it plays important roles in bone metabolism and blood coagulation. The Ca ions can condition the microenvironment at the tissue-material interface, affecting the protein deposition process and cell responses. The aim of this study was to analyze the changes in the patterns of protein adsorption on the silica hybrid biomaterials supplemented with different amounts of CaCl2, which can function as release vehicles. This characterization was carried out by incubating the Ca-biomaterials with human serum. LC-MS/MS analysis was used to characterize the adsorbed protein layers and compile a list of proteins whose affinity for the surfaces might depend on the CaCl2 content. The attachment of pro- and anti-clotting proteins, such as THRB, ANT3, and PROC, increased significantly on the Ca-materials. Similarly, VTNC and APOE, proteins directly involved on osteogenic processes, attached preferentially to these surfaces. To assess correlations with the proteomic data, these formulations were tested in vitro regarding their osteogenic and inflammatory potential, employing MC3T3-E1 and RAW 264.7 cell lines, respectively. The results confirmed a Ca dose-dependent osteogenic and inflammatory behavior of the materials employed, in accordance with the protein attachment patterns. | es_ES |
dc.description.sponsorship | This work was supported by MINECO [MAT2017-86043-R]; Universitat Jaume I [Grant numbers Predoc/2014/25, UJI-B2017-37]; Basque Government [Grant numbers IT611-13, Predoc/2016/1/0141]; University of the Basque Country [Grant number UFI11/56]. CIC bioGUNE is supported by Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia County; The ProteoRed-ISCIII (Grant PRB3 IPT17/0019); CIBERehd Network, and Severo Ochoa Grant (SEV-2016-0644). Authors would like to thank Antonio Coso and Jaime Franco (GMI-Ilerimplant) for their inestimable contribution to this study, and Raquel Oliver, Jose Ortega (UJI) and Iraide Escobes (CIC bioGUNE) for their valuable technical assistance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | JBIC Journal of Biological Inorganic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Prothrombin | es_ES |
dc.subject | Apolipoprotein E | es_ES |
dc.subject | Blood clotting | es_ES |
dc.subject | Vitronectin | es_ES |
dc.subject | Bone regeneration | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Proteomic analysis of calcium-enriched sol-gel biomaterials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00775-019-01662-5 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-86043-R/ES/DESARROLLO DE IMPLANTES DENTALES CON PROPIEDADES OSTEOGENICAS PARA LA UNIVERSALIZACION DE RECEPTORES. DETERMINACION DE PATRONES DE PROTEINAS DE LA EFICACIA REGENERATIVA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//Predoc%2F2014%2F25/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//UJI-B2017-37/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//IT611-13/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Eusko Jaurlaritza//Predoc%2F2016%2F1%2F0141/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV%2FEHU//UFI11%2F56/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0644/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PRB3 IPT17%2F0019/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Romero-Gavilán, F.; Araújo-Gomes, N.; Cerqueira, A.; García-Arnáez, I.; Martínez-Ramos, C.; Azkargorta, M.; Iloro, I.... (2019). Proteomic analysis of calcium-enriched sol-gel biomaterials. JBIC Journal of Biological Inorganic Chemistry. 24(4):563-574. https://doi.org/10.1007/s00775-019-01662-5 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00775-019-01662-5 | es_ES |
dc.description.upvformatpinicio | 563 | es_ES |
dc.description.upvformatpfin | 574 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\399800 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Gobierno Vasco/Eusko Jaurlaritza | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universidad del País Vasco/Euskal Herriko Unibertsitatea | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | |
dc.description.references | Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature 395:645–648. https://doi.org/10.1038/27094 | es_ES |
dc.description.references | Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. https://doi.org/10.1016/j.biomaterials.2011.01.004 | es_ES |
dc.description.references | Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858. https://doi.org/10.1079/PNS2003301 | es_ES |
dc.description.references | Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46:571–576. https://doi.org/10.1016/j.bone.2009.07.082 | es_ES |
dc.description.references | Honda Y, Fitzsimmons RJ, Baylink DJ, Mohan S (1995) Effects of extracellular calcium on insulin-like growth factor II in human bone cells. J Bone Miner Res 10:1660–1665. https://doi.org/10.1002/jbmr.5650101108 | es_ES |
dc.description.references | Koori K, Maeda H, Fujii S et al (2014) The roles of calcium-sensing receptor and calcium channel in osteogenic differentiation of undifferentiated periodontal ligament cells. Cell Tissue Res 357:707–718. https://doi.org/10.1007/s00441-014-1918-5 | es_ES |
dc.description.references | Habibovic P, Barralet JE (2011) Bioinorganics and biomaterials: bone repair. Acta Biomater 32:3013–3026. https://doi.org/10.1016/j.actbio.2011.03.027 | es_ES |
dc.description.references | Oshiro Junior J, Paiva Abuçafy M, Berbel Manaia E et al (2016) Drug delivery systems obtained from silica based organic-inorganic hybrids. Polymers (Basel) 8:91. https://doi.org/10.3390/polym8040091 | es_ES |
dc.description.references | Jones JR (2015) Reprint of: review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019 | es_ES |
dc.description.references | Romero-Gavilán F, Barros-Silva S, García-Cañadas J et al (2016) Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes. J Non Cryst Solids 453:66–73. https://doi.org/10.1016/j.jnoncrysol.2016.09.026 | es_ES |
dc.description.references | Martínez-Ibáñez M, Juan-Díaz MJ, Lara-Saez I et al (2016) Biological characterization of a new silicon based coating developed for dental implants. J Mater Sci Mater Med 27:80. https://doi.org/10.1007/s10856-016-5690-9 | es_ES |
dc.description.references | Martínez-Ibáñez M, Murthy NS, Mao Y et al (2018) Enhancement of plasma protein adsorption and osteogenesis of hMSCs by functionalized siloxane coatings for titanium implants. J Biomed Mater Res Part B Appl Biomater 106:1138–1147. https://doi.org/10.1002/jbm.b.33889 | es_ES |
dc.description.references | Salinas AJ, Merino JM, Babonneau F et al (2007) Microstructure and Macroscopic Properties of Bioactive CaO–SiO2–PDMS Hybrids. J Biomed Mater Res B Appl Biomater 81B:274–282. https://doi.org/10.1002/jbm.b.30663 | es_ES |
dc.description.references | Almeida JC, Wacha A, Gomes PS et al (2016) A biocompatible hybrid material with simultaneous calcium and strontium release capability for bone tissue repair. Mater Sci Eng, C 62:429–438. https://doi.org/10.1016/j.msec.2016.01.083 | es_ES |
dc.description.references | Valliant EM, Romer F, Wang D et al (2013) Bioactivity in silica/poly(c-glutamic acid) sol-gel hybrids through calcium chelation. Acta Biomater 9:7662–7671. https://doi.org/10.1016/j.actbio.2013.04.037 | es_ES |
dc.description.references | Shirosaki Y, Tsuru K, Hayakawa S et al (2005) In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials 26:485–493. https://doi.org/10.1016/j.biomaterials.2004.02.056 | es_ES |
dc.description.references | Romero-Gavilán F, Gomes NC, Ródenas J et al (2017) Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. Biofouling 33:98–111. https://doi.org/10.1080/08927014.2016.1259414 | es_ES |
dc.description.references | Hirsh SL, McKenzie DR, Nosworthy NJ et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces 103:395–404. https://doi.org/10.1016/j.colsurfb.2012.10.039 | es_ES |
dc.description.references | Chen Z, Klein T, Murray RZ et al (2015) Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today 19:304–321. https://doi.org/10.1016/j.mattod.2015.11.004 | es_ES |
dc.description.references | Araújo-Gomes N, Romero-Gavilán F, García-Arnáez I et al (2018) Osseointegration mechanisms: a proteomic approach. J Biol Inorg Chem 23:459–470. https://doi.org/10.1007/s00775-018-1553-9 | es_ES |
dc.description.references | Romero-Gavilán F, Sanchez-Pérez AM, Araújo-Gomes N et al (2017) Proteomic analysis of silica hybrid sol-gel coatings: a potential tool for predicting the biocompatibility of implants in vivo. Biofouling 33:676–689. https://doi.org/10.1080/08927014.2017.1356289 | es_ES |
dc.description.references | Araújo-Gomes N, Romero-Gavilán F, Sanchez-Pérez AM et al (2018) Characterization of serum proteins attached to distinct sol-gel hybrid surfaces. J Biomed Mater Res Part B Appl Biomater 106:1477–1485. https://doi.org/10.1002/jbm.b.33954 | es_ES |
dc.description.references | Romero-Gavilan F, Araújo-Gomes N, Sánchez-Pérez AM et al (2017) Bioactive potential of silica coatings and its effect on the adhesion of proteins to titanium implants. Colloids Surfaces B Biointerfaces 162:316–325. https://doi.org/10.1016/j.colsurfb.2017.11.072 | es_ES |
dc.description.references | Shiu HT, Goss B, Lutton C et al (2014) Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng Part B Rev 20:697–712. https://doi.org/10.1089/ten.teb.2013.0709 | es_ES |
dc.description.references | Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:3–8. https://doi.org/10.1038/NMETH.1322 | es_ES |
dc.description.references | Dvorak MM, Riccardi D (2004) Ca2 + as an extracellular signal in bone. Cell Calcium 35:249–255. https://doi.org/10.1016/j.ceca.2003.10.014 | es_ES |
dc.description.references | Cho NH, Seong SY (2009) Apolipoproteins inhibit the innate immunity activated by necrotic cells or bacterial endotoxin. Immunology 128:479–486. https://doi.org/10.1111/j.1365-2567.2008.03002.x | es_ES |
dc.description.references | Meerasa A, Huang JG, Gu FX (2013) Human serum lipoproteins influence protein deposition patterns on nanoparticle surfaces. ACS Appl Mater Interfaces 5:489–493. https://doi.org/10.1021/am302554q | es_ES |
dc.description.references | Baitsch D, Bock HH, Engel T et al (2011) Apolipoprotein e induces antiinflammatory phenotype in macrophages. Arterioscler Thromb Vasc Biol 31:1160–1168. https://doi.org/10.1161/ATVBAHA.111.222745 | es_ES |
dc.description.references | Niemeier A, Schinke T, Heeren J, Amling M (2012) The role of Apolipoprotein E in bone metabolism. Bone 50:518–524. https://doi.org/10.1016/j.bone.2011.07.015 | es_ES |
dc.description.references | Kim WS, Kim HJ, Lee ZH et al (2013) Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Exp Cell Res 319:436–446. https://doi.org/10.1016/j.yexcr.2012.12.004 | es_ES |
dc.description.references | Emsley J, White HE, O’Hara BP et al (1994) Structure of pentameric human serum amyloid P component. Nature 367:338–345 | es_ES |
dc.description.references | Poulsen ET, Pedersen KW, Marzeda AM, Enghild JJ (2017) Serum amyloid P component (SAP) interactome in human plasma containing physiological calcium levels. Biochemistry 56:896–902. https://doi.org/10.1021/acs.biochem.6b01027 | es_ES |
dc.description.references | Bottazzi B, Inforzato A, Messa M et al (2016) The pentraxins PTX3 and SAP in innate immunity, regulation of inflammation and tissue remodelling. J Hepatol 64:1416–1427. https://doi.org/10.1016/j.jhep.2016.02.029 | es_ES |
dc.description.references | Mollnes TE, Kirschfink M (2006) Strategies of therapeutic complement inhibition. Mol Immunol 43:107–121. https://doi.org/10.1016/j.molimm.2005.06.014 | es_ES |
dc.description.references | Gessmann J, Seybold D, Peter E et al (2013) Plasma clots gelled by different amounts of calcium for stem cell delivery. Langenbeck’s Arch Surg 398:161–167. https://doi.org/10.1007/s00423-012-1015-8 | es_ES |
dc.description.references | Scheraga HA (2004) The thrombin-fibrinogen interaction. Biophys Chem 112:117–130. https://doi.org/10.1016/j.bpc.2004.07.011 | es_ES |
dc.description.references | Chu AJ (2010) Blood coagulation as an intrinsic pathway for proinflammation: a mini review. Inflamm Allergy Drug Targets 9:32–44. https://doi.org/10.2174/187152810791292890 | es_ES |
dc.description.references | Suleiman L, Négrier C, Boukerche H (2013) Protein S: a multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 88:637–654. https://doi.org/10.1016/j.critrevonc.2013.07.004 | es_ES |
dc.description.references | Furie B, Furie BC (2008) Mechanisms of thrombus formation. N Engl J Med 359:938–949. https://doi.org/10.1056/NEJMra0801082 | es_ES |
dc.description.references | Biltoft D, Gram JB, Larsen A et al (2017) Fast form alpha-2-macroglobulin—a marker for protease activation in plasma exposed to artificial surfaces. Clin Biochem 50:1203–1208. https://doi.org/10.1016/j.clinbiochem.2017.09.002 | es_ES |
dc.description.references | Cvirn G, Gallistl S, Koestenberger M et al (2002) Alpha 2-macroglobulin enhances prothrombin activation and thrombin potential by inhibiting the anticoagulant protein C/protein S system in cord and adult plasma. Thromb Res 105:433–439. https://doi.org/10.1016/S0049-3848(02)00042-7 | es_ES |
dc.description.references | Vogler EA, Siedlecki CA (2009) Contact activation of blood-plasma coagulation. Biomaterials 30:1857–1869. https://doi.org/10.1016/j.biomaterials.2008.12.041 | es_ES |
dc.description.references | Leavesley DI, Kashyap AS, Croll T et al (2013) Vitronectin—master controller or micromanager? IUBMB Life 65:807–818. https://doi.org/10.1002/iub.1203 | es_ES |
dc.description.references | Kundu AK, Putnam AJ (2006) Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun 347:347–357. https://doi.org/10.1016/j.bbrc.2006.06.110 | es_ES |
dc.description.references | Cacchioli A, Ravanetti F, Bagno A et al (2009) Human vitronectin-derived peptide covalently grafted onto titanium surface improves osteogenic activity: a pilot in vivo study on rabbits. Tissue Eng Part A 15:2017–2026. https://doi.org/10.1089/ten.tea.2008.0542 | es_ES |