- -

CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuster Capilla, Robert Ricard es_ES
dc.contributor.author Gasso Matoses, María Teresa es_ES
dc.contributor.author Gimenez Manglano, María Isabel es_ES
dc.date.accessioned 2021-01-12T21:02:55Z
dc.date.available 2021-01-12T21:02:55Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158844
dc.description.abstract [EN] The Combined matrix of a nonsingular matrix A is defined by phi(A)=A T where degrees means the Hadamard (entrywise) product. If the matrix A describes the relation between inputs and outputs in a multivariable process control, phi(A) describes the relative gain array (RGA) of the process and it defines the Bristol method (IEEE Trans Autom Control 1:133-134, 1966) often used for Chemical processes (McAvoy in Interaction analysis: principles and applications. Instrument Society of America, Pittsburgh, 1983; Papadourakis et al. in Ind Eng Chem Res 26(6):1259-1262, 1987; Wang et al. in Chem Eng Technol, 10.1002/ceat.201500202, 2016; Kariwala et al. in Ind Eng Chem Res 45(5):1751-1757, 10.1021/ie050790r, 2006; Golender et al. in J Chem Inf Comput Sci 21(4):196-204, 10.1021/ci00032a004, 1981). The combined matrix has been studied in several works such as Bru et al. (J Appl Math, 10.1155/2014/182354, 2014), Fiedler and Markham (Linear Algebra Appl 435:1945-1955, 2011) and Johnson and Shapiro (SIAM J Algebraic Discrete Methods 7:627-644, 1986). Since phi(A)=(cij) has the property of Sigma kcik=Sigma kckj=1,i,j, when phi(A)>= 0, phi(A) is a doubly stochastic matrix. In certain chemical engineering applications a diagonal of the RGA in wchich the entries are near 1 is used to determine the pairing of inputs and outputs for further design analysis. Applications of these matrices can be found in Communication Theory, related with the satellite-switched time division multiple-access systems, and about a doubly stochastic automorphism of a graph. In this paper we present new algorithms to generate doubly stochastic matrices with the Combined matrix using Hessenberg matrices in Sect.3 and orthogonal/unitary matrices in Sect.4. In addition, we discuss what kind of doubly stochastic matrices are obtained with our algorithms and the possibility of generating a particular doubly stochastic matrix by the map phi. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministerio de Economia y Competitividad Grants MTM2014-58159-P, MTM2017-85669-P and MTM2017-90682-REDT. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hadamard product es_ES
dc.subject Combined matrix es_ES
dc.subject Doubly stochastic matrix es_ES
dc.subject Hessenberg matrix es_ES
dc.subject Householder matrix es_ES
dc.subject Orthogonal matrix es_ES
dc.subject Unitary matrix es_ES
dc.subject Relative gain array es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10910-019-01032-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Fuster Capilla, RR.; Gasso Matoses, MT.; Gimenez Manglano, MI. (2019). CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T). Journal of Mathematical Chemistry. 57(7):1700-1709. https://doi.org/10.1007/s10910-019-01032-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10910-019-01032-1 es_ES
dc.description.upvformatpinicio 1700 es_ES
dc.description.upvformatpfin 1709 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\392077 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references E. Bristol, On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 1, 133–134 (1966) es_ES
dc.description.references R.A. Brualdi, Some applications of doubly stochastic matrices. Linear Algebra Appl. 107, 77–100 (1988) es_ES
dc.description.references R. Bru, M.T. Gassó, I. Giménez, M. Santana, Nonnegative combined matrices. J. Appl. Math. (2014). https://doi.org/10.1155/2014/182354 es_ES
dc.description.references J. Cremona, Letter to the Editor. Am. Math. Monthly 4, 757 (2014) es_ES
dc.description.references M. Fiedler, Relations between the diagonal entries of two mutually inverse positive definite matrices. Czechosl. Math. J. 14, 39–51 (1964) es_ES
dc.description.references M. Fiedler, T.L. Markham, Combined matrices in special classes of matrices. Linear Algebra Appl. 435, 1945–1955 (2011) es_ES
dc.description.references F.R. Gantmacher, The theory of matrices (American Mathematical Society, Chelsea, 1960) es_ES
dc.description.references V.E. Golender, V.V. Drboglav, A.B. Rosenblit, Graph potentials method and its application for chemical information processing. J. Chem. Inf. Comput. Sci. 21(4), 196–204 (1981). https://doi.org/10.1021/ci00032a004 es_ES
dc.description.references R.A. Horn, C.R. Johnson, Topics in matrix analysis (Cambridge University Press, Cambridge, 1991) es_ES
dc.description.references C. Johnson, H. Shapiro, Mathematical aspects of the relarive gain array. SIAM J. Algebraic Discrete Methods 7, 627–644 (1986) es_ES
dc.description.references V. Kariwala, S. Skogestad, J.F. Forbes, Relative gain array for norm-bounded uncertain systems. Ind. Eng. Chem. Res. 45(5), 1751–1757 (2006). https://doi.org/10.1021/ie050790r es_ES
dc.description.references H. Liebeck, A. Osborne, The generation of all rational orthogonal matrices. Am. Math. Monthly 98(2), 131–133 (1991) es_ES
dc.description.references T.J. McAvoy, Interaction Analysis: Principles and Applications (Instrument Society of America, Pittsburgh, 1983) es_ES
dc.description.references B. Mourad, Generalization of some results concerning eigenvalues of a certain class of matrices and some applications. Linear Multilinear Algebra 61, 1234–1243 (2013) es_ES
dc.description.references A. Papadourakis et al., Relative gain array for units in plants with recycle. Ind. Eng. Chem. Res. 26(6), 1259–1262 (1987) es_ES
dc.description.references H. Wang et al., Design and control of extractive distillation based on an effective relative gain array. Chem. Eng. Technol. (2016). https://doi.org/10.1002/ceat.201500202 es_ES
dc.description.references M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants. Ind. Eng. Chem. Res. 33(9), 2134–2139 (1994). https://doi.org/10.1021/ie00033a016 es_ES
dc.description.references H. Wang, Y. Li, S. Weiyi, Y. Zhang, J. Guo, C. Li, Design and control of extractive distillation based on effective relative gain array. Chem. Eng. Technol. 39, 1–9 (2016). https://doi.org/10.1002/ceat.201500202 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem