Mostrar el registro sencillo del ítem
dc.contributor.author | Fuster Capilla, Robert Ricard | es_ES |
dc.contributor.author | Gasso Matoses, María Teresa | es_ES |
dc.contributor.author | Gimenez Manglano, María Isabel | es_ES |
dc.date.accessioned | 2021-01-12T21:02:55Z | |
dc.date.available | 2021-01-12T21:02:55Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.issn | 0259-9791 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158844 | |
dc.description.abstract | [EN] The Combined matrix of a nonsingular matrix A is defined by phi(A)=A T where degrees means the Hadamard (entrywise) product. If the matrix A describes the relation between inputs and outputs in a multivariable process control, phi(A) describes the relative gain array (RGA) of the process and it defines the Bristol method (IEEE Trans Autom Control 1:133-134, 1966) often used for Chemical processes (McAvoy in Interaction analysis: principles and applications. Instrument Society of America, Pittsburgh, 1983; Papadourakis et al. in Ind Eng Chem Res 26(6):1259-1262, 1987; Wang et al. in Chem Eng Technol, 10.1002/ceat.201500202, 2016; Kariwala et al. in Ind Eng Chem Res 45(5):1751-1757, 10.1021/ie050790r, 2006; Golender et al. in J Chem Inf Comput Sci 21(4):196-204, 10.1021/ci00032a004, 1981). The combined matrix has been studied in several works such as Bru et al. (J Appl Math, 10.1155/2014/182354, 2014), Fiedler and Markham (Linear Algebra Appl 435:1945-1955, 2011) and Johnson and Shapiro (SIAM J Algebraic Discrete Methods 7:627-644, 1986). Since phi(A)=(cij) has the property of Sigma kcik=Sigma kckj=1,i,j, when phi(A)>= 0, phi(A) is a doubly stochastic matrix. In certain chemical engineering applications a diagonal of the RGA in wchich the entries are near 1 is used to determine the pairing of inputs and outputs for further design analysis. Applications of these matrices can be found in Communication Theory, related with the satellite-switched time division multiple-access systems, and about a doubly stochastic automorphism of a graph. In this paper we present new algorithms to generate doubly stochastic matrices with the Combined matrix using Hessenberg matrices in Sect.3 and orthogonal/unitary matrices in Sect.4. In addition, we discuss what kind of doubly stochastic matrices are obtained with our algorithms and the possibility of generating a particular doubly stochastic matrix by the map phi. | es_ES |
dc.description.sponsorship | This work has been supported by Spanish Ministerio de Economia y Competitividad Grants MTM2014-58159-P, MTM2017-85669-P and MTM2017-90682-REDT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hadamard product | es_ES |
dc.subject | Combined matrix | es_ES |
dc.subject | Doubly stochastic matrix | es_ES |
dc.subject | Hessenberg matrix | es_ES |
dc.subject | Householder matrix | es_ES |
dc.subject | Orthogonal matrix | es_ES |
dc.subject | Unitary matrix | es_ES |
dc.subject | Relative gain array | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-019-01032-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Fuster Capilla, RR.; Gasso Matoses, MT.; Gimenez Manglano, MI. (2019). CMMSE algorithms for constructing doubly stochastic matrices with the relative gain array (combined matrix) A circle A(-T). Journal of Mathematical Chemistry. 57(7):1700-1709. https://doi.org/10.1007/s10910-019-01032-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10910-019-01032-1 | es_ES |
dc.description.upvformatpinicio | 1700 | es_ES |
dc.description.upvformatpfin | 1709 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 57 | es_ES |
dc.description.issue | 7 | es_ES |
dc.relation.pasarela | S\392077 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | E. Bristol, On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control 1, 133–134 (1966) | es_ES |
dc.description.references | R.A. Brualdi, Some applications of doubly stochastic matrices. Linear Algebra Appl. 107, 77–100 (1988) | es_ES |
dc.description.references | R. Bru, M.T. Gassó, I. Giménez, M. Santana, Nonnegative combined matrices. J. Appl. Math. (2014). https://doi.org/10.1155/2014/182354 | es_ES |
dc.description.references | J. Cremona, Letter to the Editor. Am. Math. Monthly 4, 757 (2014) | es_ES |
dc.description.references | M. Fiedler, Relations between the diagonal entries of two mutually inverse positive definite matrices. Czechosl. Math. J. 14, 39–51 (1964) | es_ES |
dc.description.references | M. Fiedler, T.L. Markham, Combined matrices in special classes of matrices. Linear Algebra Appl. 435, 1945–1955 (2011) | es_ES |
dc.description.references | F.R. Gantmacher, The theory of matrices (American Mathematical Society, Chelsea, 1960) | es_ES |
dc.description.references | V.E. Golender, V.V. Drboglav, A.B. Rosenblit, Graph potentials method and its application for chemical information processing. J. Chem. Inf. Comput. Sci. 21(4), 196–204 (1981). https://doi.org/10.1021/ci00032a004 | es_ES |
dc.description.references | R.A. Horn, C.R. Johnson, Topics in matrix analysis (Cambridge University Press, Cambridge, 1991) | es_ES |
dc.description.references | C. Johnson, H. Shapiro, Mathematical aspects of the relarive gain array. SIAM J. Algebraic Discrete Methods 7, 627–644 (1986) | es_ES |
dc.description.references | V. Kariwala, S. Skogestad, J.F. Forbes, Relative gain array for norm-bounded uncertain systems. Ind. Eng. Chem. Res. 45(5), 1751–1757 (2006). https://doi.org/10.1021/ie050790r | es_ES |
dc.description.references | H. Liebeck, A. Osborne, The generation of all rational orthogonal matrices. Am. Math. Monthly 98(2), 131–133 (1991) | es_ES |
dc.description.references | T.J. McAvoy, Interaction Analysis: Principles and Applications (Instrument Society of America, Pittsburgh, 1983) | es_ES |
dc.description.references | B. Mourad, Generalization of some results concerning eigenvalues of a certain class of matrices and some applications. Linear Multilinear Algebra 61, 1234–1243 (2013) | es_ES |
dc.description.references | A. Papadourakis et al., Relative gain array for units in plants with recycle. Ind. Eng. Chem. Res. 26(6), 1259–1262 (1987) | es_ES |
dc.description.references | H. Wang et al., Design and control of extractive distillation based on an effective relative gain array. Chem. Eng. Technol. (2016). https://doi.org/10.1002/ceat.201500202 | es_ES |
dc.description.references | M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants. Ind. Eng. Chem. Res. 33(9), 2134–2139 (1994). https://doi.org/10.1021/ie00033a016 | es_ES |
dc.description.references | H. Wang, Y. Li, S. Weiyi, Y. Zhang, J. Guo, C. Li, Design and control of extractive distillation based on effective relative gain array. Chem. Eng. Technol. 39, 1–9 (2016). https://doi.org/10.1002/ceat.201500202 | es_ES |