- -

Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs

Mostrar el registro completo del ítem

Giménez-Marqués, M.; Santiago-Portillo, A.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Briois, V.; Nouar, F.; García Gómez, H.... (2019). Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A. 7(35):20285-20292. https://doi.org/10.1039/c9ta01948k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158854

Ficheros en el ítem

Metadatos del ítem

Título: Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs
Autor: Giménez-Marqués, Mónica Santiago-Portillo, Andrea Navalón Oltra, Sergio Alvaro Rodríguez, Maria Mercedes Briois, Valérie Nouar, Farid García Gómez, Hermenegildo Serre, Christian
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] A series of mixed-metal Fe-III/Ni-II metal-organic frameworks (MOFs) of the MIL-100 type containing different metal ratios have been synthesized de novo, following an approach that requires tuning of the Fe-III/Ni-II ...[+]
Palabras clave: Metalorganic frameworks (MOFs) , Heterogeneous catalyst , Acid-catalyzed reactions , Catalyst activity , Extended X ray absorption fine structure spectroscopy
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry A. (issn: 2050-7488 )
DOI: 10.1039/c9ta01948k
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9ta01948k
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/
info:eu-repo/grantAgreement/ANR//ANR-10-EQPX-0045/FR/Spectromètre EXAFS Rapide pour Cinétiques Chimiques/ROCK/
Agradecimientos:
This work was supported by the European Commission under the Marie Sklodowska-Curie agreement H2020-MSCA-IF-658224. Measurements at the ROCK synchrotron beamline of SOLEIL were supported by a public grant overseen by the ...[+]
Tipo: Artículo

References

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

H. García and S.Navalón , Metal-Organic Frameworks: Applications in Separations and Catalysis , Wiley , ISBN: 978-3-527-80910-3, 2018

Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b [+]
Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

H. García and S.Navalón , Metal-Organic Frameworks: Applications in Separations and Catalysis , Wiley , ISBN: 978-3-527-80910-3, 2018

Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b

Tu, W., Xu, Y., Yin, S., & Xu, R. (2018). Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 30(33), 1707582. doi:10.1002/adma.201707582

Depauw, H., Nevjestić, I., Wang, G., Leus, K., Callens, F., De Canck, E., … Van Der Voort, P. (2017). Discovery of a novel, large pore phase in a bimetallic Al/V metal–organic framework. Journal of Materials Chemistry A, 5(47), 24580-24584. doi:10.1039/c7ta08103k

Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a

Aguirre-Díaz, L. M., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Tunable Catalytic Activity of Solid Solution Metal–Organic Frameworks in One-Pot Multicomponent Reactions. Journal of the American Chemical Society, 137(19), 6132-6135. doi:10.1021/jacs.5b02313

Mitchell, L., Williamson, P., Ehrlichová, B., Anderson, A. E., Seymour, V. R., Ashbrook, S. E., … Wright, P. A. (2014). Mixed-Metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis Acid Catalysis and Tandem CC Bond Formation and Alcohol Oxidation. Chemistry - A European Journal, 20(51), 17185-17197. doi:10.1002/chem.201404377

Schejn, A., Aboulaich, A., Balan, L., Falk, V., Lalevée, J., Medjahdi, G., … Schneider, R. (2015). Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catalysis Science & Technology, 5(3), 1829-1839. doi:10.1039/c4cy01505c

Park, J., Li, J.-R., Chen, Y.-P., Yu, J., Yakovenko, A. A., Wang, Z. U., … Zhou, H.-C. (2012). A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 48(80), 9995. doi:10.1039/c2cc34622b

Castillo-Blas, C., de la Peña-O’Shea, V. A., Puente-Orench, I., de Paz, J. R., Sáez-Puche, R., Gutiérrez-Puebla, E., … Monge, Á. (2017). Addressed realization of multication complex arrangements in metal-organic frameworks. Science Advances, 3(7), e1700773. doi:10.1126/sciadv.1700773

Cohen, S. M. (2011). Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 112(2), 970-1000. doi:10.1021/cr200179u

Castells-Gil, J., Padial, N. M., Almora-Barrios, N., Albero, J., Ruiz-Salvador, A. R., González-Platas, J., … Martí-Gastaldo, C. (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition, 57(28), 8453-8457. doi:10.1002/anie.201802089

Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., (3), 284-286. doi:10.1039/b512169h

Guillerm, V., Gross, S., Serre, C., Devic, T., Bauer, M., & Férey, G. (2010). A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun., 46(5), 767-769. doi:10.1039/b914919h

Wongsakulphasatch, S., Nouar, F., Rodriguez, J., Scott, L., Le Guillouzer, C., Devic, T., … Serre, C. (2015). Direct accessibility of mixed-metal (iii/ii) acid sites through the rational synthesis of porous metal carboxylates. Chemical Communications, 51(50), 10194-10197. doi:10.1039/c5cc02550h

Feng, D., Wang, K., Wei, Z., Chen, Y.-P., Simon, C. M., Arvapally, R. K., … Zhou, H.-C. (2014). Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 5(1). doi:10.1038/ncomms6723

Wang, X.-L., Dong, L.-Z., Qiao, M., Tang, Y.-J., Liu, J., Li, Y., … Lan, Y.-Q. (2018). Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angewandte Chemie International Edition, 57(31), 9660-9664. doi:10.1002/anie.201803587

Vrubel, H., Hasegawa, T., Oliveira, E. de, & Nunes, F. S. (2006). A new facile high yield preparative route for mixed-trinuclear acetate clusters. Inorganic Chemistry Communications, 9(2), 208-211. doi:10.1016/j.inoche.2005.10.023

Schoedel, A., & Zaworotko, M. J. (2014). [M3(μ3-O)(O2CR)6] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chem. Sci., 5(4), 1269-1282. doi:10.1039/c4sc00171k

Zhang, W., Shi, Y., Li, C., Zhao, Q., & Li, X. (2016). Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3. Catalysis Letters, 146(10), 1956-1964. doi:10.1007/s10562-016-1840-4

Nouar, F., Devic, T., Chevreau, H., Guillou, N., Gibson, E., Clet, G., … Serre, C. (2012). Tuning the breathing behaviour of MIL-53 by cation mixing. Chemical Communications, 48(82), 10237. doi:10.1039/c2cc35348b

Opanasenko, M., Dhakshinamoorthy, A., Hwang, Y. K., Chang, J.-S., Garcia, H., & Čejka, J. (2013). Superior Performance of Metal-Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 6(5), 865-871. doi:10.1002/cssc.201300032

Gómez-Pozuelo, G., Cabello, C. P., Opanasenko, M., Horáček, M., & Čejka, J. (2016). Superior Activity of Isomorphously Substituted MOFs with MIL-100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 82(1), 152-159. doi:10.1002/cplu.201600456

Peng, L., Asgari, M., Mieville, P., Schouwink, P., Bulut, S., Sun, D. T., … Queen, W. L. (2017). Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(28), 23957-23966. doi:10.1021/acsami.7b06041

Eubank, J. F., Wheatley, P. S., Lebars, G., McKinlay, A. C., Leclerc, H., Horcajada, P., … Serre, C. (2014). Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Materials, 2(12), 124112. doi:10.1063/1.4904069

HADJIIVANOV, K. I. (2000). Identification of Neutral and Charged NxOySurface Species by IR Spectroscopy. Catalysis Reviews, 42(1-2), 71-144. doi:10.1081/cr-100100260

Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230

Wuttke, S., Bazin, P., Vimont, A., Serre, C., Seo, Y.-K., Hwang, Y. K., … Daturi, M. (2012). Discovering the Active Sites for C3 Separation in MIL-100(Fe) by Using Operando IR Spectroscopy. Chemistry - A European Journal, 18(38), 11959-11967. doi:10.1002/chem.201201006

Common Fragrance and Flavor Materials, Preparation, Properties, and Uses , ed. H. Surburg and J. Panten , Wiley-VCH , Weinheim , 2006 , vol. 67

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b

http://ixs.iit.edu/subcommittee_reports/sc/err-rep.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem