Mostrar el registro sencillo del ítem
dc.contributor.author | Giménez-Marqués, Mónica | es_ES |
dc.contributor.author | Santiago-Portillo, Andrea | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Briois, Valérie | es_ES |
dc.contributor.author | Nouar, Farid | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Serre, Christian | es_ES |
dc.date.accessioned | 2021-01-12T21:03:22Z | |
dc.date.available | 2021-01-12T21:03:22Z | |
dc.date.issued | 2019-09-21 | es_ES |
dc.identifier.issn | 2050-7488 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/158854 | |
dc.description.abstract | [EN] A series of mixed-metal Fe-III/Ni-II metal-organic frameworks (MOFs) of the MIL-100 type containing different metal ratios have been synthesized de novo, following an approach that requires tuning of the Fe-III/Ni-II reactivity. The resulting heterometallic MIL-100(Fe, Ni) materials maintain thermal, chemical and structural stability with respect to the parent MIL-100(Fe) MOF as can be deduced from various techniques. The nature and the oxidation state of the accessible metal cations have been evaluated by in situ infrared spectroscopy and extended X-ray absorption fine structure measurements. The obtained mixed-metal MOFs and the parent material have been evaluated as heterogeneous catalysts in a model acid-catalyzed reaction, i.e., the Prins reaction. It is found that the catalytic activity improves by more than one order of magnitude upon incorporation of Ni-II, with a complete selectivity for the formation of nopol. This increase in the catalytic activity upon incorporation of Ni-II correlates with the enhancement in the Lewis acidity of the material as determined by CO adsorption. The heterometallic MOF can be recycled without observation of metal leaching, while maintaining the crystal structure under the reaction conditions. | es_ES |
dc.description.sponsorship | This work was supported by the European Commission under the Marie Sklodowska-Curie agreement H2020-MSCA-IF-658224. Measurements at the ROCK synchrotron beamline of SOLEIL were supported by a public grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (reference: ANR10-EQPX45). H. G. thanks financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO21) and Generalitat Valenciana (Prometeo 2017/083). S. N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016) and Ministerio de Ciencia, Innovacion y Universidades CTQ-2018 RTI2018-099482-A-I00 project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metalorganic frameworks (MOFs) | es_ES |
dc.subject | Heterogeneous catalyst | es_ES |
dc.subject | Acid-catalyzed reactions | es_ES |
dc.subject | Catalyst activity | es_ES |
dc.subject | Extended X ray absorption fine structure spectroscopy | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9ta01948k | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/658224/EU/Rational design of novel heterometallic MOFs for their use in heterogeneous catalysis for cascade reactions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-098237-B-C21/ES/HETEROUNIONES DE GRAFENO CON CONFIGURACION CONTROLADA. SINTESIS Y APLICACIONES COMO SOPORTE EN CATALISIS Y EN ELECTRODOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-EQPX-0045/FR/Spectromètre EXAFS Rapide pour Cinétiques Chimiques/ROCK/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Giménez-Marqués, M.; Santiago-Portillo, A.; Navalón Oltra, S.; Alvaro Rodríguez, MM.; Briois, V.; Nouar, F.; García Gómez, H.... (2019). Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A. 7(35):20285-20292. https://doi.org/10.1039/c9ta01948k | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9ta01948k | es_ES |
dc.description.upvformatpinicio | 20285 | es_ES |
dc.description.upvformatpfin | 20292 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 35 | es_ES |
dc.relation.pasarela | S\404895 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.description.references | Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 | es_ES |
dc.description.references | H. García and S.Navalón , Metal-Organic Frameworks: Applications in Separations and Catalysis , Wiley , ISBN: 978-3-527-80910-3, 2018 | es_ES |
dc.description.references | Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b | es_ES |
dc.description.references | Tu, W., Xu, Y., Yin, S., & Xu, R. (2018). Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 30(33), 1707582. doi:10.1002/adma.201707582 | es_ES |
dc.description.references | Depauw, H., Nevjestić, I., Wang, G., Leus, K., Callens, F., De Canck, E., … Van Der Voort, P. (2017). Discovery of a novel, large pore phase in a bimetallic Al/V metal–organic framework. Journal of Materials Chemistry A, 5(47), 24580-24584. doi:10.1039/c7ta08103k | es_ES |
dc.description.references | Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a | es_ES |
dc.description.references | Aguirre-Díaz, L. M., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Tunable Catalytic Activity of Solid Solution Metal–Organic Frameworks in One-Pot Multicomponent Reactions. Journal of the American Chemical Society, 137(19), 6132-6135. doi:10.1021/jacs.5b02313 | es_ES |
dc.description.references | Mitchell, L., Williamson, P., Ehrlichová, B., Anderson, A. E., Seymour, V. R., Ashbrook, S. E., … Wright, P. A. (2014). Mixed-Metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis Acid Catalysis and Tandem CC Bond Formation and Alcohol Oxidation. Chemistry - A European Journal, 20(51), 17185-17197. doi:10.1002/chem.201404377 | es_ES |
dc.description.references | Schejn, A., Aboulaich, A., Balan, L., Falk, V., Lalevée, J., Medjahdi, G., … Schneider, R. (2015). Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catalysis Science & Technology, 5(3), 1829-1839. doi:10.1039/c4cy01505c | es_ES |
dc.description.references | Park, J., Li, J.-R., Chen, Y.-P., Yu, J., Yakovenko, A. A., Wang, Z. U., … Zhou, H.-C. (2012). A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 48(80), 9995. doi:10.1039/c2cc34622b | es_ES |
dc.description.references | Castillo-Blas, C., de la Peña-O’Shea, V. A., Puente-Orench, I., de Paz, J. R., Sáez-Puche, R., Gutiérrez-Puebla, E., … Monge, Á. (2017). Addressed realization of multication complex arrangements in metal-organic frameworks. Science Advances, 3(7), e1700773. doi:10.1126/sciadv.1700773 | es_ES |
dc.description.references | Cohen, S. M. (2011). Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 112(2), 970-1000. doi:10.1021/cr200179u | es_ES |
dc.description.references | Castells-Gil, J., Padial, N. M., Almora-Barrios, N., Albero, J., Ruiz-Salvador, A. R., González-Platas, J., … Martí-Gastaldo, C. (2018). Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping. Angewandte Chemie International Edition, 57(28), 8453-8457. doi:10.1002/anie.201802089 | es_ES |
dc.description.references | Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., (3), 284-286. doi:10.1039/b512169h | es_ES |
dc.description.references | Guillerm, V., Gross, S., Serre, C., Devic, T., Bauer, M., & Férey, G. (2010). A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(iv) dicarboxylates. Chem. Commun., 46(5), 767-769. doi:10.1039/b914919h | es_ES |
dc.description.references | Wongsakulphasatch, S., Nouar, F., Rodriguez, J., Scott, L., Le Guillouzer, C., Devic, T., … Serre, C. (2015). Direct accessibility of mixed-metal (iii/ii) acid sites through the rational synthesis of porous metal carboxylates. Chemical Communications, 51(50), 10194-10197. doi:10.1039/c5cc02550h | es_ES |
dc.description.references | Feng, D., Wang, K., Wei, Z., Chen, Y.-P., Simon, C. M., Arvapally, R. K., … Zhou, H.-C. (2014). Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 5(1). doi:10.1038/ncomms6723 | es_ES |
dc.description.references | Wang, X.-L., Dong, L.-Z., Qiao, M., Tang, Y.-J., Liu, J., Li, Y., … Lan, Y.-Q. (2018). Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angewandte Chemie International Edition, 57(31), 9660-9664. doi:10.1002/anie.201803587 | es_ES |
dc.description.references | Vrubel, H., Hasegawa, T., Oliveira, E. de, & Nunes, F. S. (2006). A new facile high yield preparative route for mixed-trinuclear acetate clusters. Inorganic Chemistry Communications, 9(2), 208-211. doi:10.1016/j.inoche.2005.10.023 | es_ES |
dc.description.references | Schoedel, A., & Zaworotko, M. J. (2014). [M3(μ3-O)(O2CR)6] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chem. Sci., 5(4), 1269-1282. doi:10.1039/c4sc00171k | es_ES |
dc.description.references | Zhang, W., Shi, Y., Li, C., Zhao, Q., & Li, X. (2016). Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3. Catalysis Letters, 146(10), 1956-1964. doi:10.1007/s10562-016-1840-4 | es_ES |
dc.description.references | Nouar, F., Devic, T., Chevreau, H., Guillou, N., Gibson, E., Clet, G., … Serre, C. (2012). Tuning the breathing behaviour of MIL-53 by cation mixing. Chemical Communications, 48(82), 10237. doi:10.1039/c2cc35348b | es_ES |
dc.description.references | Opanasenko, M., Dhakshinamoorthy, A., Hwang, Y. K., Chang, J.-S., Garcia, H., & Čejka, J. (2013). Superior Performance of Metal-Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 6(5), 865-871. doi:10.1002/cssc.201300032 | es_ES |
dc.description.references | Gómez-Pozuelo, G., Cabello, C. P., Opanasenko, M., Horáček, M., & Čejka, J. (2016). Superior Activity of Isomorphously Substituted MOFs with MIL-100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. ChemPlusChem, 82(1), 152-159. doi:10.1002/cplu.201600456 | es_ES |
dc.description.references | Peng, L., Asgari, M., Mieville, P., Schouwink, P., Bulut, S., Sun, D. T., … Queen, W. L. (2017). Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(28), 23957-23966. doi:10.1021/acsami.7b06041 | es_ES |
dc.description.references | Eubank, J. F., Wheatley, P. S., Lebars, G., McKinlay, A. C., Leclerc, H., Horcajada, P., … Serre, C. (2014). Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Materials, 2(12), 124112. doi:10.1063/1.4904069 | es_ES |
dc.description.references | HADJIIVANOV, K. I. (2000). Identification of Neutral and Charged NxOySurface Species by IR Spectroscopy. Catalysis Reviews, 42(1-2), 71-144. doi:10.1081/cr-100100260 | es_ES |
dc.description.references | Yoon, J. W., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., Leclerc, H., Wuttke, S., … Férey, G. (2010). Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie International Edition, 49(34), 5949-5952. doi:10.1002/anie.201001230 | es_ES |
dc.description.references | Wuttke, S., Bazin, P., Vimont, A., Serre, C., Seo, Y.-K., Hwang, Y. K., … Daturi, M. (2012). Discovering the Active Sites for C3 Separation in MIL-100(Fe) by Using Operando IR Spectroscopy. Chemistry - A European Journal, 18(38), 11959-11967. doi:10.1002/chem.201201006 | es_ES |
dc.description.references | Common Fragrance and Flavor Materials, Preparation, Properties, and Uses , ed. H. Surburg and J. Panten , Wiley-VCH , Weinheim , 2006 , vol. 67 | es_ES |
dc.description.references | Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 | es_ES |
dc.description.references | Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b | es_ES |
dc.description.references | http://ixs.iit.edu/subcommittee_reports/sc/err-rep.pdf | es_ES |