- -

Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-01-14T04:33:01Z
dc.date.available 2021-01-14T04:33:01Z
dc.date.issued 2020-01-04 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/158949
dc.description.abstract [EN] Metal organic frameworks (MOFs) are widely used as solid catalysts in the liquid phase under batch mode conditions. Moving towards the development of industrial processes, data of the performance of MOFs under continuous flow operation would be desirable. This feature article describes the state of the art regarding the use of MOFs as catalysts of continuous flow processes, paying special attention to the issue of catalyst stability. The review is organized according to the type of bond that is formed in the reaction from C-C, to C-O to C-N bonds. Examples are presented of MOF catalysts that are stable under continuous flow operation, even for those structures that are not very stable such as Cu-3(BTC)(2). It can be anticipated that there will be a growth in the percentage of studies carried out under continuous flow with the final goal of implementing a commercial chemical process using MOFs as a catalyst. es_ES
dc.description.sponsorship A. D. thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A. D. also thanks the Department of Science and Technology, India, for the financial support through Extramural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and RTI2018-890237-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/RTI2018-890237-CO2-R1 es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c9cc07953j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Navalón Oltra, S.; Asiri, AM.; García Gómez, H. (2020). Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications. 56(1):26-45. https://doi.org/10.1039/c9cc07953j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c9cc07953j es_ES
dc.description.upvformatpinicio 26 es_ES
dc.description.upvformatpfin 45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 31782441 es_ES
dc.relation.pasarela S\407315 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Department of Science and Technology, Ministry of Science and Technology, India es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e es_ES
dc.description.references Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 es_ES
dc.description.references Silva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307e es_ES
dc.description.references Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639 es_ES
dc.description.references Martin, R. L., & Haranczyk, M. (2013). Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 4(4), 1781. doi:10.1039/c3sc00033h es_ES
dc.description.references He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b es_ES
dc.description.references Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H.-C. (2018). Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303 es_ES
dc.description.references Park, J., Kim, H., Han, S. S., & Jung, Y. (2012). Tuning Metal–Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution. The Journal of Physical Chemistry Letters, 3(7), 826-829. doi:10.1021/jz300047n es_ES
dc.description.references Vitillo, J. G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P. D. C., … Zecchina, A. (2008). Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 130(26), 8386-8396. doi:10.1021/ja8007159 es_ES
dc.description.references Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660e es_ES
dc.description.references Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h es_ES
dc.description.references Perego, C., & Millini, R. (2013). Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev., 42(9), 3956-3976. doi:10.1039/c2cs35244c es_ES
dc.description.references Zhao, X. S., Bao, X. Y., Guo, W., & Lee, F. Y. (2006). Immobilizing catalysts on porous materials. Materials Today, 9(3), 32-39. doi:10.1016/s1369-7021(06)71388-8 es_ES
dc.description.references Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139 es_ES
dc.description.references Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738 es_ES
dc.description.references Csicsery, S. M. (1984). Shape-selective catalysis in zeolites. Zeolites, 4(3), 202-213. doi:10.1016/0144-2449(84)90024-1 es_ES
dc.description.references Lin, Z.-J., Lü, J., Hong, M., & Cao, R. (2014). Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev., 43(16), 5867-5895. doi:10.1039/c3cs60483g es_ES
dc.description.references Li, B., Wen, H.-M., Zhou, W., Xu, J. Q., & Chen, B. (2016). Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. Chem, 1(4), 557-580. doi:10.1016/j.chempr.2016.09.009 es_ES
dc.description.references Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534 es_ES
dc.description.references Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j es_ES
dc.description.references Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386 es_ES
dc.description.references Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 es_ES
dc.description.references Van der Waal, J. C., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1998). Zeolite Titanium Beta. Journal of Catalysis, 173(1), 74-83. doi:10.1006/jcat.1997.1901 es_ES
dc.description.references Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a es_ES
dc.description.references Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g es_ES
dc.description.references Dhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science & Technology, 3(10), 2509. doi:10.1039/c3cy00350g es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., Huang, Y., & Walton, K. S. (2013). Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 1(18), 5642. doi:10.1039/c3ta10662d es_ES
dc.description.references Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 114(20), 10575-10612. doi:10.1021/cr5002589 es_ES
dc.description.references Nita, K., Nakai, S., Hidaka, S., Mibuchi, T., Shimakawa, H., Ii, K.-I., & Inamura, K. (1987). Deactivation and Reactivation Behavior of Zeolite Hidrocracking Catalyst for Residual Oil. Catalyst Deactivation 1987, Proceedings of the 4th International Symposium, 501-511. doi:10.1016/s0167-2991(09)60386-4 es_ES
dc.description.references Sujan, A. R., Koh, D.-Y., Zhu, G., Babu, V. P., Stephenson, N., Rosinski, A., … Lively, R. P. (2018). High-Temperature Activation of Zeolite-Loaded Fiber Sorbents. Industrial & Engineering Chemistry Research, 57(34), 11757-11766. doi:10.1021/acs.iecr.8b02210 es_ES
dc.description.references Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 es_ES
dc.description.references Wang, B., Lv, X.-L., Feng, D., Xie, L.-H., Zhang, J., Li, M., … Zhou, H.-C. (2016). Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 138(19), 6204-6216. doi:10.1021/jacs.6b01663 es_ES
dc.description.references Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 11(3), 899-923. doi:10.1002/cctc.201801452 es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Taddei, M., Wakeham, R. J., Koutsianos, A., Andreoli, E., & Barron, A. R. (2018). Post‐Synthetic Ligand Exchange in Zirconium‐Based Metal–Organic Frameworks: Beware of The Defects! Angewandte Chemie International Edition, 57(36), 11706-11710. doi:10.1002/anie.201806910 es_ES
dc.description.references Taddei, M. (2017). When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 343, 1-24. doi:10.1016/j.ccr.2017.04.010 es_ES
dc.description.references Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40(2), 498-519. doi:10.1039/c0cs00031k es_ES
dc.description.references LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004 es_ES
dc.description.references Liu, Z., Zhu, J., Peng, C., Wakihara, T., & Okubo, T. (2019). Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. Reaction Chemistry & Engineering, 4(10), 1699-1720. doi:10.1039/c9re00142e es_ES
dc.description.references Rao, B. G., Sudarsanam, P., Mallesham, B., & Reddy, B. M. (2016). Highly efficient continuous-flow oxidative coupling of amines using promising nanoscale CeO2–M/SiO2 (M = MoO3 and WO3) solid acid catalysts. RSC Advances, 6(97), 95252-95262. doi:10.1039/c6ra21218b es_ES
dc.description.references Jeong, G.-Y., Singh, A. K., Kim, M.-G., Gyak, K.-W., Ryu, U., Choi, K. M., & Kim, D.-P. (2018). Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nature Communications, 9(1). doi:10.1038/s41467-018-06438-0 es_ES
dc.description.references Rubio-Martinez, M., Batten, M. P., Polyzos, A., Carey, K.-C., Mardel, J. I., Lim, K.-S., & Hill, M. R. (2014). Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks. Scientific Reports, 4(1). doi:10.1038/srep05443 es_ES
dc.description.references Liu, X., Ünal, B., & Jensen, K. F. (2012). Heterogeneous catalysis with continuous flow microreactors. Catalysis Science & Technology, 2(10), 2134. doi:10.1039/c2cy20260c es_ES
dc.description.references Porta, R., Benaglia, M., & Puglisi, A. (2015). Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Organic Process Research & Development, 20(1), 2-25. doi:10.1021/acs.oprd.5b00325 es_ES
dc.description.references Plouffe, P., Macchi, A., & Roberge, D. M. (2014). From Batch to Continuous Chemical Synthesis—A Toolbox Approach. Organic Process Research & Development, 18(11), 1286-1294. doi:10.1021/op5001918 es_ES
dc.description.references Souzanchi, S., Nazari, L., Rao, K. T. V., Yuan, Z., Tan, Z., & Xu, C. (Charles). (2019). Catalytic isomerization of glucose to fructose using heterogeneous solid Base catalysts in a continuous-flow tubular reactor: Catalyst screening study. Catalysis Today, 319, 76-83. doi:10.1016/j.cattod.2018.03.056 es_ES
dc.description.references Wegner, J., Ceylan, S., & Kirschning, A. (2011). Ten key issues in modern flow chemistry. Chemical Communications, 47(16), 4583. doi:10.1039/c0cc05060a es_ES
dc.description.references Irfan, M., Glasnov, T. N., & Kappe, C. O. (2011). Heterogeneous Catalytic Hydrogenation Reactions in Continuous-Flow Reactors. ChemSusChem, 4(3), 300-316. doi:10.1002/cssc.201000354 es_ES
dc.description.references Moreno-Marrodan, C., Liguori, F., & Barbaro, P. (2017). Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein Journal of Organic Chemistry, 13, 734-754. doi:10.3762/bjoc.13.73 es_ES
dc.description.references Hintermair, U., Franciò, G., & Leitner, W. (2011). Continuous flow organometallic catalysis: new wind in old sails. Chemical Communications, 47(13), 3691. doi:10.1039/c0cc04958a es_ES
dc.description.references Yoshida, J., Kim, H., & Nagaki, A. (2010). Green and Sustainable Chemical Synthesis Using Flow Microreactors. ChemSusChem, 4(3), 331-340. doi:10.1002/cssc.201000271 es_ES
dc.description.references Webb, D., & Jamison, T. F. (2010). Continuous flow multi-step organic synthesis. Chemical Science, 1(6), 675. doi:10.1039/c0sc00381f es_ES
dc.description.references Marre, S., & Jensen, K. F. (2010). Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews, 39(3), 1183. doi:10.1039/b821324k es_ES
dc.description.references Frost, C. G., & Mutton, L. (2010). Heterogeneous catalytic synthesis using microreactor technology. Green Chemistry, 12(10), 1687. doi:10.1039/c0gc00133c es_ES
dc.description.references Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368-373. doi:10.1038/nature05058 es_ES
dc.description.references Mason, B. P., Price, K. E., Steinbacher, J. L., Bogdan, A. R., & McQuade, D. T. (2007). Greener Approaches to Organic Synthesis Using Microreactor Technology. Chemical Reviews, 107(6), 2300-2318. doi:10.1021/cr050944c es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem