- -

Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Navalón Oltra, S.; Asiri, AM.; García Gómez, H. (2020). Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions. Chemical Communications. 56(1):26-45. https://doi.org/10.1039/c9cc07953j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/158949

Ficheros en el ítem

Metadatos del ítem

Título: Metal organic frameworks as solid catalysts for liquid-phase continuous flow reactions
Autor: Dhakshinamoorthy, Amarajothi Navalón Oltra, Sergio Asiri, Abdullah M. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Metal organic frameworks (MOFs) are widely used as solid catalysts in the liquid phase under batch mode conditions. Moving towards the development of industrial processes, data of the performance of MOFs under continuous ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c9cc07953j
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9cc07953j
Código del Proyecto:
info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/
MINECO/RTI2018-890237-CO2-R1
Agradecimientos:
A. D. thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. A. D. also thanks the Department of Science and Technology, India, for the financial ...[+]
Tipo: Artículo

References

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e [+]
Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

Silva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307e

Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., … Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134(36), 15016-15021. doi:10.1021/ja3055639

Martin, R. L., & Haranczyk, M. (2013). Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 4(4), 1781. doi:10.1039/c3sc00033h

He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041b

Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., … Zhou, H.-C. (2018). Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. doi:10.1002/adma.201704303

Park, J., Kim, H., Han, S. S., & Jung, Y. (2012). Tuning Metal–Organic Frameworks with Open-Metal Sites and Its Origin for Enhancing CO2 Affinity by Metal Substitution. The Journal of Physical Chemistry Letters, 3(7), 826-829. doi:10.1021/jz300047n

Vitillo, J. G., Regli, L., Chavan, S., Ricchiardi, G., Spoto, G., Dietzel, P. D. C., … Zecchina, A. (2008). Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 130(26), 8386-8396. doi:10.1021/ja8007159

Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660e

Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256h

Perego, C., & Millini, R. (2013). Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev., 42(9), 3956-3976. doi:10.1039/c2cs35244c

Zhao, X. S., Bao, X. Y., Guo, W., & Lee, F. Y. (2006). Immobilizing catalysts on porous materials. Materials Today, 9(3), 32-39. doi:10.1016/s1369-7021(06)71388-8

Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738

Csicsery, S. M. (1984). Shape-selective catalysis in zeolites. Zeolites, 4(3), 202-213. doi:10.1016/0144-2449(84)90024-1

Lin, Z.-J., Lü, J., Hong, M., & Cao, R. (2014). Metal–organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev., 43(16), 5867-5895. doi:10.1039/c3cs60483g

Li, B., Wen, H.-M., Zhou, W., Xu, J. Q., & Chen, B. (2016). Porous Metal-Organic Frameworks: Promising Materials for Methane Storage. Chem, 1(4), 557-580. doi:10.1016/j.chempr.2016.09.009

Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534

Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j

Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Van der Waal, J. C., Kunkeler, P. J., Tan, K., & van Bekkum, H. (1998). Zeolite Titanium Beta. Journal of Catalysis, 173(1), 74-83. doi:10.1006/jcat.1997.1901

Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a

Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g

Dhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science & Technology, 3(10), 2509. doi:10.1039/c3cy00350g

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., Huang, Y., & Walton, K. S. (2013). Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 1(18), 5642. doi:10.1039/c3ta10662d

Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 114(20), 10575-10612. doi:10.1021/cr5002589

Nita, K., Nakai, S., Hidaka, S., Mibuchi, T., Shimakawa, H., Ii, K.-I., & Inamura, K. (1987). Deactivation and Reactivation Behavior of Zeolite Hidrocracking Catalyst for Residual Oil. Catalyst Deactivation 1987, Proceedings of the 4th International Symposium, 501-511. doi:10.1016/s0167-2991(09)60386-4

Sujan, A. R., Koh, D.-Y., Zhu, G., Babu, V. P., Stephenson, N., Rosinski, A., … Lively, R. P. (2018). High-Temperature Activation of Zeolite-Loaded Fiber Sorbents. Industrial & Engineering Chemistry Research, 57(34), 11757-11766. doi:10.1021/acs.iecr.8b02210

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

Wang, B., Lv, X.-L., Feng, D., Xie, L.-H., Zhang, J., Li, M., … Zhou, H.-C. (2016). Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. Journal of the American Chemical Society, 138(19), 6204-6216. doi:10.1021/jacs.6b01663

Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M., & Garcia, H. (2019). Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem, 11(3), 899-923. doi:10.1002/cctc.201801452

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u

Taddei, M., Wakeham, R. J., Koutsianos, A., Andreoli, E., & Barron, A. R. (2018). Post‐Synthetic Ligand Exchange in Zirconium‐Based Metal–Organic Frameworks: Beware of The Defects! Angewandte Chemie International Edition, 57(36), 11706-11710. doi:10.1002/anie.201806910

Taddei, M. (2017). When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 343, 1-24. doi:10.1016/j.ccr.2017.04.010

Tanabe, K. K., & Cohen, S. M. (2011). Postsynthetic modification of metal–organic frameworks—a progress report. Chem. Soc. Rev., 40(2), 498-519. doi:10.1039/c0cs00031k

LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004

Liu, Z., Zhu, J., Peng, C., Wakihara, T., & Okubo, T. (2019). Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. Reaction Chemistry & Engineering, 4(10), 1699-1720. doi:10.1039/c9re00142e

Rao, B. G., Sudarsanam, P., Mallesham, B., & Reddy, B. M. (2016). Highly efficient continuous-flow oxidative coupling of amines using promising nanoscale CeO2–M/SiO2 (M = MoO3 and WO3) solid acid catalysts. RSC Advances, 6(97), 95252-95262. doi:10.1039/c6ra21218b

Jeong, G.-Y., Singh, A. K., Kim, M.-G., Gyak, K.-W., Ryu, U., Choi, K. M., & Kim, D.-P. (2018). Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nature Communications, 9(1). doi:10.1038/s41467-018-06438-0

Rubio-Martinez, M., Batten, M. P., Polyzos, A., Carey, K.-C., Mardel, J. I., Lim, K.-S., & Hill, M. R. (2014). Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks. Scientific Reports, 4(1). doi:10.1038/srep05443

Liu, X., Ünal, B., & Jensen, K. F. (2012). Heterogeneous catalysis with continuous flow microreactors. Catalysis Science & Technology, 2(10), 2134. doi:10.1039/c2cy20260c

Porta, R., Benaglia, M., & Puglisi, A. (2015). Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Organic Process Research & Development, 20(1), 2-25. doi:10.1021/acs.oprd.5b00325

Plouffe, P., Macchi, A., & Roberge, D. M. (2014). From Batch to Continuous Chemical Synthesis—A Toolbox Approach. Organic Process Research & Development, 18(11), 1286-1294. doi:10.1021/op5001918

Souzanchi, S., Nazari, L., Rao, K. T. V., Yuan, Z., Tan, Z., & Xu, C. (Charles). (2019). Catalytic isomerization of glucose to fructose using heterogeneous solid Base catalysts in a continuous-flow tubular reactor: Catalyst screening study. Catalysis Today, 319, 76-83. doi:10.1016/j.cattod.2018.03.056

Wegner, J., Ceylan, S., & Kirschning, A. (2011). Ten key issues in modern flow chemistry. Chemical Communications, 47(16), 4583. doi:10.1039/c0cc05060a

Irfan, M., Glasnov, T. N., & Kappe, C. O. (2011). Heterogeneous Catalytic Hydrogenation Reactions in Continuous-Flow Reactors. ChemSusChem, 4(3), 300-316. doi:10.1002/cssc.201000354

Moreno-Marrodan, C., Liguori, F., & Barbaro, P. (2017). Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes. Beilstein Journal of Organic Chemistry, 13, 734-754. doi:10.3762/bjoc.13.73

Hintermair, U., Franciò, G., & Leitner, W. (2011). Continuous flow organometallic catalysis: new wind in old sails. Chemical Communications, 47(13), 3691. doi:10.1039/c0cc04958a

Yoshida, J., Kim, H., & Nagaki, A. (2010). Green and Sustainable Chemical Synthesis Using Flow Microreactors. ChemSusChem, 4(3), 331-340. doi:10.1002/cssc.201000271

Webb, D., & Jamison, T. F. (2010). Continuous flow multi-step organic synthesis. Chemical Science, 1(6), 675. doi:10.1039/c0sc00381f

Marre, S., & Jensen, K. F. (2010). Synthesis of micro and nanostructures in microfluidic systems. Chemical Society Reviews, 39(3), 1183. doi:10.1039/b821324k

Frost, C. G., & Mutton, L. (2010). Heterogeneous catalytic synthesis using microreactor technology. Green Chemistry, 12(10), 1687. doi:10.1039/c0gc00133c

Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature, 442(7101), 368-373. doi:10.1038/nature05058

Mason, B. P., Price, K. E., Steinbacher, J. L., Bogdan, A. R., & McQuade, D. T. (2007). Greener Approaches to Organic Synthesis Using Microreactor Technology. Chemical Reviews, 107(6), 2300-2318. doi:10.1021/cr050944c

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem