- -

A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force

Mostrar el registro completo del ítem

Aguilera, J.; González, LC.; Montes-Y-Gómez, M.; Rosso, P. (2019). A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force. Lecture Notes in Computer Science. 11401:305-313. https://doi.org/10.1007/978-3-030-13469-3_36

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159134

Ficheros en el ítem

Metadatos del ítem

Título: A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force
Autor: Aguilera, Juan González, Luis C. Montes-y-Gómez, Manuel Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] The kNN algorithm has three main advantages that make it appealing to the community: it is easy to understand, it regularly offers competitive performance and its structure can be easily tuning to adapting to the ...[+]
Palabras clave: KNN , Newton's gravitational force
Derechos de uso: Reserva de todos los derechos
Fuente:
Lecture Notes in Computer Science. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-13469-3_36
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/978-3-030-13469-3_36
Título del congreso: 23rd Iberoamerican Congress on Pattern Recognition (CIARP 2018)
Lugar del congreso: Madrid, Spain
Fecha congreso: Noviembre 19-22,2018
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//FC 2016-2410/
info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/
Agradecimientos:
This research was partially supported by CONACYT-Mexico (project FC-2410). The work of Paolo Rosso has been partially funded by the SomEMBED TIN2015-71147-C2-1-P MINECO research project.
Tipo: Artículo Comunicación en congreso Capítulo de libro

References

Benavoli, A., Mangili, F., Corani, G., Zaffalon, M., Ruggeri, F.: A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, p. 9 (2014)

Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: An affinity-based new local distance function and similarity measure for kNN algorithm. Pattern Recogn. Lett. 33(3), 356–363 (2012)

Carrasco, J., García, S., del Mar Rueda, M., Herrera, F.: rNPBST: an R package covering non-parametric and bayesian statistical tests. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 281–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_24 [+]
Benavoli, A., Mangili, F., Corani, G., Zaffalon, M., Ruggeri, F.: A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, p. 9 (2014)

Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: An affinity-based new local distance function and similarity measure for kNN algorithm. Pattern Recogn. Lett. 33(3), 356–363 (2012)

Carrasco, J., García, S., del Mar Rueda, M., Herrera, F.: rNPBST: an R package covering non-parametric and bayesian statistical tests. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 281–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_24

Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, New York City (2015)

Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC 6(4), 325–327 (1976)

Guru, D.S., Sharath, Y.H., Manjunath, S.: Texture features and KNN in classification of flower images. Int. J. Comput. Appl. 1, 21–29 (2010)

Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web - WWW 2004, p. 393 (2004)

López, J., Maldonado, S.: Redefining nearest neighbor classification in high-dimensional settings. Pattern Recogn. Lett. 110, 36–43 (2018)

Mateos-García, D., García-Gutiérrez, J., Riquelme-Santos, J.C.: An evolutionary voting for k-nearest neighbours. Expert Syst. Appl. 43, 9–14 (2016)

Parvinnia, E., Sabeti, M., Jahromi, M.Z., Boostani, R.: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. J. King Saud Univ. - Comput. Inf. Sci. 26(1), 1–6 (2014)

Soucy, P., Mineau, G.: A simple KNN algorithm for text categorization. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 647–648 (2001)

Tan, S.: Neighbor-weighted K-nearest neighbor for unbalanced text corpus. Expert Syst. Appl. 28(4), 667–671 (2005)

Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)

Xu, Y., Zhu, Q., Fan, Z., Qiu, M., Chen, Y., Liu, H.: Coarse to fine K nearest neighbor classifier. Pattern Recogn. Lett. 34(9), 980–986 (2013)

Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel kNN algorithm with data-driven k parameter computation. Pattern Recogn. Lett. 0, 1–11 (2017)

Zhu, Q., Feng, J., Huang, J.: Natural neighbor: a self-adaptive neighborhood method without parameter K. Pattern Recogn. Lett. 80, 30–36 (2016)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem