Mostrar el registro sencillo del ítem
dc.contributor.author | Aguilera, Juan | es_ES |
dc.contributor.author | González, Luis C. | es_ES |
dc.contributor.author | Montes-y-Gómez, Manuel | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.date.accessioned | 2021-01-15T04:31:10Z | |
dc.date.available | 2021-01-15T04:31:10Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159134 | |
dc.description.abstract | [EN] The kNN algorithm has three main advantages that make it appealing to the community: it is easy to understand, it regularly offers competitive performance and its structure can be easily tuning to adapting to the needs of researchers to achieve better results. One of the variations is weighting the instances based on their distance. In this paper we propose a weighting based on the Newton's gravitational force, so that a mass (or relevance) has to be assigned to each instance. We evaluated this idea in the kNN context over 13 benchmark data sets used for binary and multi-class classification experiments. Results in F1 score, statistically validated, suggest that our proposal outperforms the original version of kNN and is statistically competitive with the distance weighted kNN version as well. | es_ES |
dc.description.sponsorship | This research was partially supported by CONACYT-Mexico (project FC-2410). The work of Paolo Rosso has been partially funded by the SomEMBED TIN2015-71147-C2-1-P MINECO research project. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.relation.ispartof | Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | KNN | es_ES |
dc.subject | Newton's gravitational force | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-13469-3_36 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//FC 2016-2410/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Aguilera, J.; González, LC.; Montes-Y-Gómez, M.; Rosso, P. (2019). A New Weighted k-Nearest Neighbor Algorithm Based on Newton¿s Gravitational Force. Lecture Notes in Computer Science. 11401:305-313. https://doi.org/10.1007/978-3-030-13469-3_36 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 23rd Iberoamerican Congress on Pattern Recognition (CIARP 2018) | es_ES |
dc.relation.conferencedate | Noviembre 19-22,2018 | es_ES |
dc.relation.conferenceplace | Madrid, Spain | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-13469-3_36 | es_ES |
dc.description.upvformatpinicio | 305 | es_ES |
dc.description.upvformatpfin | 313 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11401 | es_ES |
dc.relation.pasarela | S\409389 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Benavoli, A., Mangili, F., Corani, G., Zaffalon, M., Ruggeri, F.: A Bayesian Wilcoxon signed-rank test based on the Dirichlet process. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, p. 9 (2014) | es_ES |
dc.description.references | Bhattacharya, G., Ghosh, K., Chowdhury, A.S.: An affinity-based new local distance function and similarity measure for kNN algorithm. Pattern Recogn. Lett. 33(3), 356–363 (2012) | es_ES |
dc.description.references | Carrasco, J., García, S., del Mar Rueda, M., Herrera, F.: rNPBST: an R package covering non-parametric and bayesian statistical tests. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 281–292. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_24 | es_ES |
dc.description.references | Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books, New York City (2015) | es_ES |
dc.description.references | Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC 6(4), 325–327 (1976) | es_ES |
dc.description.references | Guru, D.S., Sharath, Y.H., Manjunath, S.: Texture features and KNN in classification of flower images. Int. J. Comput. Appl. 1, 21–29 (2010) | es_ES |
dc.description.references | Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web - WWW 2004, p. 393 (2004) | es_ES |
dc.description.references | López, J., Maldonado, S.: Redefining nearest neighbor classification in high-dimensional settings. Pattern Recogn. Lett. 110, 36–43 (2018) | es_ES |
dc.description.references | Mateos-García, D., García-Gutiérrez, J., Riquelme-Santos, J.C.: An evolutionary voting for k-nearest neighbours. Expert Syst. Appl. 43, 9–14 (2016) | es_ES |
dc.description.references | Parvinnia, E., Sabeti, M., Jahromi, M.Z., Boostani, R.: Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. J. King Saud Univ. - Comput. Inf. Sci. 26(1), 1–6 (2014) | es_ES |
dc.description.references | Soucy, P., Mineau, G.: A simple KNN algorithm for text categorization. In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 647–648 (2001) | es_ES |
dc.description.references | Tan, S.: Neighbor-weighted K-nearest neighbor for unbalanced text corpus. Expert Syst. Appl. 28(4), 667–671 (2005) | es_ES |
dc.description.references | Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972) | es_ES |
dc.description.references | Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008) | es_ES |
dc.description.references | Xu, Y., Zhu, Q., Fan, Z., Qiu, M., Chen, Y., Liu, H.: Coarse to fine K nearest neighbor classifier. Pattern Recogn. Lett. 34(9), 980–986 (2013) | es_ES |
dc.description.references | Zhang, S., Cheng, D., Deng, Z., Zong, M., Deng, X.: A novel kNN algorithm with data-driven k parameter computation. Pattern Recogn. Lett. 0, 1–11 (2017) | es_ES |
dc.description.references | Zhu, Q., Feng, J., Huang, J.: Natural neighbor: a self-adaptive neighborhood method without parameter K. Pattern Recogn. Lett. 80, 30–36 (2016) | es_ES |