Mostrar el registro sencillo del ítem
dc.contributor.author | Cosa-Martínez, Juan | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Monzó Balbuena, José Mª | es_ES |
dc.date.accessioned | 2021-01-16T04:31:30Z | |
dc.date.available | 2021-01-16T04:31:30Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.issn | 1546-542X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159194 | |
dc.description.abstract | [EN] Alkali-activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 x 40 x 40 mm(3)). With the newly designed mold, cubic samples of soil stabilized with portland cement (OPC) and alternative AAC (based on spent fluid catalytic cracking catalyst FCC) were prepared from which compressive strength was obtained. Cylindrical specimens were also prepared using the same binders as in the previous case to obtain their compressive strength. The results obtained in both cases were compared. Greater resistances for cubic samples were achieved. The cubic specimens were selected for being better in terms of standard deviation of compressive strength for AAC stabilized soil. The obtained compressive strength and standard deviation results were compared between the soil specimens stabilized with different stabilizers cured at 7, 14, 28, and 90 days. The method allows small-sized cubic specimens to be prepared. It improves ergonomics. It also facilitates a large number of specimens being obtained with a small amount of sample. Soil stabilized with AAC yielded higher compressive strength after 90 days compared to that with OPC. | es_ES |
dc.description.sponsorship | Spanish Ministry of Economy and Competitiveness, Grant/Award Number: BIA2015 70107-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | International Journal of Applied Ceramic Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alkali-activated cement | es_ES |
dc.subject | Soil stabilization | es_ES |
dc.subject | Sustainable construction materials | es_ES |
dc.subject | Waste reuse | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ijac.13377 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology. 17(1):190-196. https://doi.org/10.1111/ijac.13377 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/ijac.13377 | es_ES |
dc.description.upvformatpinicio | 190 | es_ES |
dc.description.upvformatpfin | 196 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\407163 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | UNE‐EN 12390‐1.Testing hardened concrete ‐ Part 1: Shape dimensions and other requirements for specimens and moulds.2013. | es_ES |
dc.description.references | UNE‐EN 41410.Compressed earth blocs for walls and partitions. Definitions specifications and test Methods.2008. | es_ES |
dc.description.references | ASTM D‐18C. ed. STP479‐EB Special Procedures for Testing Soil and Rock for Engineering Purposes: 5th ed. West Conshohocken PA: ASTM International.1970.https://doi.org/10.1520/STP479-EB | es_ES |
dc.description.references | UNE‐EN 196–1.Methods of testing cement ‐ Part 1: Determination of strength.2005. | es_ES |
dc.description.references | Auroville Earth Institute Earthen architecture for sustainable habitat and compressed stabilized earth block technology [cited 2019 Sep 2]. Available fromhttp://www.ada.gov.sa/idc/groups/public/documents/AR_ADA_Researches/004568.pdf | es_ES |
dc.description.references | NLT‐310 90.Vibrating hammer compaction of treated granular. materials.1990. | es_ES |
dc.description.references | UNE‐EN 13286‐2.Unbound and hydraulically bound mixtures ‐ Part 2: Test methods for laboratory reference density and water content ‐. Proctor compaction.2011. | es_ES |
dc.description.references | Khadka, B., & Shakya, M. (2015). Comparative compressive strength of stabilized and un-stabilized rammed earth. Materials and Structures, 49(9), 3945-3955. doi:10.1617/s11527-015-0765-5 | es_ES |
dc.description.references | Alrubaye, A. J., Hasan, M., & Fattah, M. Y. (2016). Stabilization of soft kaolin clay with silica fume and lime. International Journal of Geotechnical Engineering, 11(1), 90-96. doi:10.1080/19386362.2016.1187884 | es_ES |
dc.description.references | Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468-1478. doi:10.1016/j.conbuildmat.2013.06.017 | es_ES |
dc.description.references | Zhang, M., Zhao, M., Zhang, G., Nowak, P., Coen, A., & Tao, M. (2015). Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Applied Clay Science, 108, 199-207. doi:10.1016/j.clay.2015.02.029 | es_ES |
dc.description.references | Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001 | es_ES |
dc.description.references | Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057 | es_ES |
dc.description.references | Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005 | es_ES |
dc.description.references | CosaJ SorianoL BorracheroMV PayáJ MonzóJ.Use ofAlkaline Activated Cements from Residues for Soil Stabilization. NOCMAT 2017. Proceeding Paper Published. In: Ghavami K Herrera PJ eds. Materials Research Proceedings. 2018. 7:257–64.http://dx.doi.org/10.21741/9781945291838-23 | es_ES |
dc.description.references | Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051 | es_ES |
dc.description.references | Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b | es_ES |
dc.description.references | UNE‐EN 103 501.Geotechnics. Compactation test. Modified proctor.1994. | es_ES |
dc.description.references | ASTMD1557–12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56 000 ft‐lbf/ft3 (2 700 kN‐m/m3)).West Conshohocken PA:ASTM. International.2012.https://doi.org/10.1520/D1557-12E01 | es_ES |
dc.description.references | UNE‐EN 772–1.Methods of test for masonry units.2011. | es_ES |
dc.description.references | UNE‐EN 197–1.Cement ‐ Part 1: composition specifications and conformity criteria for common cements.2011. | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |