- -

Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst

Mostrar el registro completo del ítem

Cosa-Martínez, J.; Soriano Martinez, L.; Borrachero Rosado, MV.; Paya Bernabeu, JJ.; Monzó Balbuena, JM. (2020). Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology. 17(1):190-196. https://doi.org/10.1111/ijac.13377

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159194

Ficheros en el ítem

Metadatos del ítem

Título: Stabilization of soil by means alternative alkali-activated cement prepared with spent FCC catalyst
Autor: Cosa-Martínez, Juan Soriano Martinez, Lourdes Borrachero Rosado, María Victoria Paya Bernabeu, Jorge Juan Monzó Balbuena, José Mª
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó
Fecha difusión:
Resumen:
[EN] Alkali-activated cements are widely studied as alternative and sustainable binder in soil stabilization. In this research work, a mold was designed and constructed, which allowed small cubic specimens to be made (40 ...[+]
Palabras clave: Alkali-activated cement , Soil stabilization , Sustainable construction materials , Waste reuse
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Applied Ceramic Technology. (issn: 1546-542X )
DOI: 10.1111/ijac.13377
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/ijac.13377
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/
Agradecimientos:
Spanish Ministry of Economy and Competitiveness, Grant/Award Number: BIA2015 70107-R.
Tipo: Artículo

References

UNE‐EN 12390‐1.Testing hardened concrete ‐ Part 1: Shape dimensions and other requirements for specimens and moulds.2013.

UNE‐EN 41410.Compressed earth blocs for walls and partitions. Definitions specifications and test Methods.2008.

ASTM D‐18C. ed. STP479‐EB Special Procedures for Testing Soil and Rock for Engineering Purposes: 5th ed. West Conshohocken PA: ASTM International.1970.https://doi.org/10.1520/STP479-EB [+]
UNE‐EN 12390‐1.Testing hardened concrete ‐ Part 1: Shape dimensions and other requirements for specimens and moulds.2013.

UNE‐EN 41410.Compressed earth blocs for walls and partitions. Definitions specifications and test Methods.2008.

ASTM D‐18C. ed. STP479‐EB Special Procedures for Testing Soil and Rock for Engineering Purposes: 5th ed. West Conshohocken PA: ASTM International.1970.https://doi.org/10.1520/STP479-EB

UNE‐EN 196–1.Methods of testing cement ‐ Part 1: Determination of strength.2005.

Auroville Earth Institute Earthen architecture for sustainable habitat and compressed stabilized earth block technology [cited 2019 Sep 2]. Available fromhttp://www.ada.gov.sa/idc/groups/public/documents/AR_ADA_Researches/004568.pdf

NLT‐310 90.Vibrating hammer compaction of treated granular. materials.1990.

UNE‐EN 13286‐2.Unbound and hydraulically bound mixtures ‐ Part 2: Test methods for laboratory reference density and water content ‐. Proctor compaction.2011.

Khadka, B., & Shakya, M. (2015). Comparative compressive strength of stabilized and un-stabilized rammed earth. Materials and Structures, 49(9), 3945-3955. doi:10.1617/s11527-015-0765-5

Alrubaye, A. J., Hasan, M., & Fattah, M. Y. (2016). Stabilization of soft kaolin clay with silica fume and lime. International Journal of Geotechnical Engineering, 11(1), 90-96. doi:10.1080/19386362.2016.1187884

Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468-1478. doi:10.1016/j.conbuildmat.2013.06.017

Zhang, M., Zhao, M., Zhang, G., Nowak, P., Coen, A., & Tao, M. (2015). Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Applied Clay Science, 108, 199-207. doi:10.1016/j.clay.2015.02.029

Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001

Mejía, J. M., Mejía de Gutiérrez, R., & Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. Journal of Cleaner Production, 118, 133-139. doi:10.1016/j.jclepro.2016.01.057

Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005

CosaJ SorianoL BorracheroMV PayáJ MonzóJ.Use ofAlkaline Activated Cements from Residues for Soil Stabilization. NOCMAT 2017. Proceeding Paper Published. In: Ghavami K Herrera PJ eds. Materials Research Proceedings. 2018. 7:257–64.http://dx.doi.org/10.21741/9781945291838-23

Tashima, M. M., Akasaki, J. L., Castaldelli, V. N., Soriano, L., Monzó, J., Payá, J., & Borrachero, M. V. (2012). New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 80, 50-52. doi:10.1016/j.matlet.2012.04.051

Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375b

UNE‐EN 103 501.Geotechnics. Compactation test. Modified proctor.1994.

ASTMD1557–12e1 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56 000 ft‐lbf/ft3 (2 700 kN‐m/m3)).West Conshohocken PA:ASTM. International.2012.https://doi.org/10.1520/D1557-12E01

UNE‐EN 772–1.Methods of test for masonry units.2011.

UNE‐EN 197–1.Cement ‐ Part 1: composition specifications and conformity criteria for common cements.2011.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem