- -

Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

Mostrar el registro completo del ítem

Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM. (2019). Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons. Materials. 12(12):1-13. https://doi.org/10.3390/ma12121953

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159196

Ficheros en el ítem

Metadatos del ítem

Título: Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons
Autor: Moreno-Rodríguez, José María Velty, Alexandra DÍAZ MORALES, URBANO MANUEL
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Different metalorganic lamellar hybrid materials based on associated nanoribbons were synthesized by the use of alkyl-benzyl monocarboxylate spacers, containing alkyl tails with variable lengths, which acted like ...[+]
Palabras clave: MOFs , Layered materials , Hybrids , Monocarboxylate spacers , Growing inhibitors , Exfoliation
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12121953
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12121953
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
Agradecimientos:
The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from MINECO for economical ...[+]
Tipo: Artículo

References

Nakagawa, K., Yamaguchi, K., Yamada, K., Sotowa, K.-I., Sugiyama, S., & Adachi, M. (2012). Synthesis and Characterization of Surface-Functionalized Layered Titanate Nanosheets Using Lamellar Self-Assembly as a Template. European Journal of Inorganic Chemistry, 2012(16), 2741-2748. doi:10.1002/ejic.201101136

Koene, B. E., Taylor, N. J., & Nazar, L. F. (1999). An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie International Edition, 38(19), 2888-2891. doi:10.1002/(sici)1521-3773(19991004)38:19<2888::aid-anie2888>3.0.co;2-u

Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 3(9), 1100-1111. doi:10.1039/c6qi00179c [+]
Nakagawa, K., Yamaguchi, K., Yamada, K., Sotowa, K.-I., Sugiyama, S., & Adachi, M. (2012). Synthesis and Characterization of Surface-Functionalized Layered Titanate Nanosheets Using Lamellar Self-Assembly as a Template. European Journal of Inorganic Chemistry, 2012(16), 2741-2748. doi:10.1002/ejic.201101136

Koene, B. E., Taylor, N. J., & Nazar, L. F. (1999). An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie International Edition, 38(19), 2888-2891. doi:10.1002/(sici)1521-3773(19991004)38:19<2888::aid-anie2888>3.0.co;2-u

Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 3(9), 1100-1111. doi:10.1039/c6qi00179c

Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c

Rao, C. N. R., Ramakrishna Matte, H. S. S., & Maitra, U. (2013). Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie International Edition, 52(50), 13162-13185. doi:10.1002/anie.201301548

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130

Gaona, A., Díaz, U., & Corma, A. (2017). Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chemistry of Materials, 29(4), 1599-1612. doi:10.1021/acs.chemmater.6b04563

Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496

Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d

Wang, G.-B., Leus, K., Hendrickx, K., Wieme, J., Depauw, H., Liu, Y.-Y., … Van Der Voort, P. (2017). A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Trans., 46(41), 14356-14364. doi:10.1039/c7dt02752d

Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020

Hoffmann, H. C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., … Brunner, E. (2011). High-Pressure in Situ129Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 133(22), 8681-8690. doi:10.1021/ja201951t

Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609a

Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224

Volkringer, C., Meddouri, M., Loiseau, T., Guillou, N., Marrot, J., Férey, G., … Latroche, M. (2008). The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorganic Chemistry, 47(24), 11892-11901. doi:10.1021/ic801624v

Syozi, I. (1951). Statistics of Kagome Lattice. Progress of Theoretical Physics, 6(3), 306-308. doi:10.1143/ptp/6.3.306

Bae, J., Lee, E. J., & Jeong, N. C. (2018). Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 54(50), 6458-6471. doi:10.1039/c8cc02348d

Bae, J., Choi, J. S., Hwang, S., Yun, W. S., Song, D., Lee, J., & Jeong, N. C. (2017). Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(29), 24743-24752. doi:10.1021/acsami.7b07299

Kim, H. K., Yun, W. S., Kim, M.-B., Kim, J. Y., Bae, Y.-S., Lee, J., & Jeong, N. C. (2015). A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 137(31), 10009-10015. doi:10.1021/jacs.5b06637

Bezverkhyy, I., Ortiz, G., Chaplais, G., Marichal, C., Weber, G., & Bellat, J.-P. (2014). MIL-53(Al) under reflux in water: Formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous and Mesoporous Materials, 183, 156-161. doi:10.1016/j.micromeso.2013.09.015

Alcock, N. W., Tracy, V. M., & Waddington, T. C. (1976). Acetates and acetato-complexes. Part 2. Spectroscopic studies. Journal of the Chemical Society, Dalton Transactions, (21), 2243. doi:10.1039/dt9760002243

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem