Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno-Rodríguez, José María | es_ES |
dc.contributor.author | Velty, Alexandra | es_ES |
dc.contributor.author | DÍAZ MORALES, URBANO MANUEL | es_ES |
dc.date.accessioned | 2021-01-16T04:31:41Z | |
dc.date.available | 2021-01-16T04:31:41Z | |
dc.date.issued | 2019-06-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159196 | |
dc.description.abstract | [EN] Different metalorganic lamellar hybrid materials based on associated nanoribbons were synthesized by the use of alkyl-benzyl monocarboxylate spacers, containing alkyl tails with variable lengths, which acted like structural growing inhibitors. These molecular agents were perpendicularly located and coordinated to aluminium nodes in the interlayer space, controlling the separation between individual structure sub-units. The hybrid materials were studied by X-ray diffraction (XRD), chemical and thermogravimetrical analysis (TGA), nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and field emission scanning electron microscopy (FESEM)/transmission electron microscopy (TEM), showing their physicochemical properties. The specific capacity of the metalorganic materials to be exfoliated through post-synthesis treatments, using several solvents due to the presence of 1D structure sub-units and a marked hydrophobic nature, was also evidenced. | es_ES |
dc.description.sponsorship | The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from MINECO for economical support. The authors thank the MULTY2HYCAT EU-Horizon 2020 funded project under grant agreement no.720783. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | MOFs | es_ES |
dc.subject | Layered materials | es_ES |
dc.subject | Hybrids | es_ES |
dc.subject | Monocarboxylate spacers | es_ES |
dc.subject | Growing inhibitors | es_ES |
dc.subject | Exfoliation | es_ES |
dc.title | Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma12121953 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM. (2019). Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons. Materials. 12(12):1-13. https://doi.org/10.3390/ma12121953 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma12121953 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 31213003 | es_ES |
dc.identifier.pmcid | PMC6631333 | es_ES |
dc.relation.pasarela | S\407673 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Nakagawa, K., Yamaguchi, K., Yamada, K., Sotowa, K.-I., Sugiyama, S., & Adachi, M. (2012). Synthesis and Characterization of Surface-Functionalized Layered Titanate Nanosheets Using Lamellar Self-Assembly as a Template. European Journal of Inorganic Chemistry, 2012(16), 2741-2748. doi:10.1002/ejic.201101136 | es_ES |
dc.description.references | Koene, B. E., Taylor, N. J., & Nazar, L. F. (1999). An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie International Edition, 38(19), 2888-2891. doi:10.1002/(sici)1521-3773(19991004)38:19<2888::aid-anie2888>3.0.co;2-u | es_ES |
dc.description.references | Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 3(9), 1100-1111. doi:10.1039/c6qi00179c | es_ES |
dc.description.references | Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c | es_ES |
dc.description.references | Rao, C. N. R., Ramakrishna Matte, H. S. S., & Maitra, U. (2013). Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie International Edition, 52(50), 13162-13185. doi:10.1002/anie.201301548 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 | es_ES |
dc.description.references | Gaona, A., Díaz, U., & Corma, A. (2017). Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chemistry of Materials, 29(4), 1599-1612. doi:10.1021/acs.chemmater.6b04563 | es_ES |
dc.description.references | Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496 | es_ES |
dc.description.references | Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d | es_ES |
dc.description.references | Wang, G.-B., Leus, K., Hendrickx, K., Wieme, J., Depauw, H., Liu, Y.-Y., … Van Der Voort, P. (2017). A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Trans., 46(41), 14356-14364. doi:10.1039/c7dt02752d | es_ES |
dc.description.references | Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020 | es_ES |
dc.description.references | Hoffmann, H. C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., … Brunner, E. (2011). High-Pressure in Situ129Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 133(22), 8681-8690. doi:10.1021/ja201951t | es_ES |
dc.description.references | Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609a | es_ES |
dc.description.references | Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224 | es_ES |
dc.description.references | Volkringer, C., Meddouri, M., Loiseau, T., Guillou, N., Marrot, J., Férey, G., … Latroche, M. (2008). The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorganic Chemistry, 47(24), 11892-11901. doi:10.1021/ic801624v | es_ES |
dc.description.references | Syozi, I. (1951). Statistics of Kagome Lattice. Progress of Theoretical Physics, 6(3), 306-308. doi:10.1143/ptp/6.3.306 | es_ES |
dc.description.references | Bae, J., Lee, E. J., & Jeong, N. C. (2018). Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 54(50), 6458-6471. doi:10.1039/c8cc02348d | es_ES |
dc.description.references | Bae, J., Choi, J. S., Hwang, S., Yun, W. S., Song, D., Lee, J., & Jeong, N. C. (2017). Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(29), 24743-24752. doi:10.1021/acsami.7b07299 | es_ES |
dc.description.references | Kim, H. K., Yun, W. S., Kim, M.-B., Kim, J. Y., Bae, Y.-S., Lee, J., & Jeong, N. C. (2015). A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 137(31), 10009-10015. doi:10.1021/jacs.5b06637 | es_ES |
dc.description.references | Bezverkhyy, I., Ortiz, G., Chaplais, G., Marichal, C., Weber, G., & Bellat, J.-P. (2014). MIL-53(Al) under reflux in water: Formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous and Mesoporous Materials, 183, 156-161. doi:10.1016/j.micromeso.2013.09.015 | es_ES |
dc.description.references | Alcock, N. W., Tracy, V. M., & Waddington, T. C. (1976). Acetates and acetato-complexes. Part 2. Spectroscopic studies. Journal of the Chemical Society, Dalton Transactions, (21), 2243. doi:10.1039/dt9760002243 | es_ES |