- -

Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno-Rodríguez, José María es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.date.accessioned 2021-01-16T04:31:41Z
dc.date.available 2021-01-16T04:31:41Z
dc.date.issued 2019-06-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159196
dc.description.abstract [EN] Different metalorganic lamellar hybrid materials based on associated nanoribbons were synthesized by the use of alkyl-benzyl monocarboxylate spacers, containing alkyl tails with variable lengths, which acted like structural growing inhibitors. These molecular agents were perpendicularly located and coordinated to aluminium nodes in the interlayer space, controlling the separation between individual structure sub-units. The hybrid materials were studied by X-ray diffraction (XRD), chemical and thermogravimetrical analysis (TGA), nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and field emission scanning electron microscopy (FESEM)/transmission electron microscopy (TEM), showing their physicochemical properties. The specific capacity of the metalorganic materials to be exfoliated through post-synthesis treatments, using several solvents due to the presence of 1D structure sub-units and a marked hydrophobic nature, was also evidenced. es_ES
dc.description.sponsorship The authors are grateful for financial support from the Spanish Government by MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from MINECO for economical support. The authors thank the MULTY2HYCAT EU-Horizon 2020 funded project under grant agreement no.720783. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject MOFs es_ES
dc.subject Layered materials es_ES
dc.subject Hybrids es_ES
dc.subject Monocarboxylate spacers es_ES
dc.subject Growing inhibitors es_ES
dc.subject Exfoliation es_ES
dc.title Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma12121953 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM. (2019). Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons. Materials. 12(12):1-13. https://doi.org/10.3390/ma12121953 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma12121953 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 31213003 es_ES
dc.identifier.pmcid PMC6631333 es_ES
dc.relation.pasarela S\407673 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nakagawa, K., Yamaguchi, K., Yamada, K., Sotowa, K.-I., Sugiyama, S., & Adachi, M. (2012). Synthesis and Characterization of Surface-Functionalized Layered Titanate Nanosheets Using Lamellar Self-Assembly as a Template. European Journal of Inorganic Chemistry, 2012(16), 2741-2748. doi:10.1002/ejic.201101136 es_ES
dc.description.references Koene, B. E., Taylor, N. J., & Nazar, L. F. (1999). An Inorganic Tire-Tread Lattice: Hydrothermal Synthesis of the Layered Vanadate [N(CH3)4]5V18O46 with a Supercell Structure. Angewandte Chemie International Edition, 38(19), 2888-2891. doi:10.1002/(sici)1521-3773(19991004)38:19<2888::aid-anie2888>3.0.co;2-u es_ES
dc.description.references Varadwaj, G. B. B., Parida, K., & Nyamori, V. O. (2016). Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: a brief overview. Inorganic Chemistry Frontiers, 3(9), 1100-1111. doi:10.1039/c6qi00179c es_ES
dc.description.references Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c es_ES
dc.description.references Rao, C. N. R., Ramakrishna Matte, H. S. S., & Maitra, U. (2013). Graphene Analogues of Inorganic Layered Materials. Angewandte Chemie International Edition, 52(50), 13162-13185. doi:10.1002/anie.201301548 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 es_ES
dc.description.references Gaona, A., Díaz, U., & Corma, A. (2017). Functional Acid and Base Hybrid Catalysts Organized by Associated (Organo)aluminosilicate Layers for C–C Bond Forming Reactions and Tandem Processes. Chemistry of Materials, 29(4), 1599-1612. doi:10.1021/acs.chemmater.6b04563 es_ES
dc.description.references Bellussi, G., Montanari, E., Di Paola, E., Millini, R., Carati, A., Rizzo, C., … Zanardi, S. (2011). ECS-3: A Crystalline Hybrid Organic-Inorganic Aluminosilicate with Open Porosity. Angewandte Chemie International Edition, 51(3), 666-669. doi:10.1002/anie.201105496 es_ES
dc.description.references Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d es_ES
dc.description.references Wang, G.-B., Leus, K., Hendrickx, K., Wieme, J., Depauw, H., Liu, Y.-Y., … Van Der Voort, P. (2017). A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Trans., 46(41), 14356-14364. doi:10.1039/c7dt02752d es_ES
dc.description.references Senkovska, I., Hoffmann, F., Fröba, M., Getzschmann, J., Böhlmann, W., & Kaskel, S. (2009). New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Microporous and Mesoporous Materials, 122(1-3), 93-98. doi:10.1016/j.micromeso.2009.02.020 es_ES
dc.description.references Hoffmann, H. C., Assfour, B., Epperlein, F., Klein, N., Paasch, S., Senkovska, I., … Brunner, E. (2011). High-Pressure in Situ129Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 133(22), 8681-8690. doi:10.1021/ja201951t es_ES
dc.description.references Yang, Q., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., … Maurin, G. (2012). Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. Journal of Materials Chemistry, 22(20), 10210. doi:10.1039/c2jm15609a es_ES
dc.description.references Carson, C. G., Hardcastle, K., Schwartz, J., Liu, X., Hoffmann, C., Gerhardt, R. A., & Tannenbaum, R. (2009). Synthesis and Structure Characterization of Copper Terephthalate Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2009(16), 2338-2343. doi:10.1002/ejic.200801224 es_ES
dc.description.references Volkringer, C., Meddouri, M., Loiseau, T., Guillou, N., Marrot, J., Férey, G., … Latroche, M. (2008). The Kagomé Topology of the Gallium and Indium Metal-Organic Framework Types with a MIL-68 Structure: Synthesis, XRD, Solid-State NMR Characterizations, and Hydrogen Adsorption. Inorganic Chemistry, 47(24), 11892-11901. doi:10.1021/ic801624v es_ES
dc.description.references Syozi, I. (1951). Statistics of Kagome Lattice. Progress of Theoretical Physics, 6(3), 306-308. doi:10.1143/ptp/6.3.306 es_ES
dc.description.references Bae, J., Lee, E. J., & Jeong, N. C. (2018). Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 54(50), 6458-6471. doi:10.1039/c8cc02348d es_ES
dc.description.references Bae, J., Choi, J. S., Hwang, S., Yun, W. S., Song, D., Lee, J., & Jeong, N. C. (2017). Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 9(29), 24743-24752. doi:10.1021/acsami.7b07299 es_ES
dc.description.references Kim, H. K., Yun, W. S., Kim, M.-B., Kim, J. Y., Bae, Y.-S., Lee, J., & Jeong, N. C. (2015). A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 137(31), 10009-10015. doi:10.1021/jacs.5b06637 es_ES
dc.description.references Bezverkhyy, I., Ortiz, G., Chaplais, G., Marichal, C., Weber, G., & Bellat, J.-P. (2014). MIL-53(Al) under reflux in water: Formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Microporous and Mesoporous Materials, 183, 156-161. doi:10.1016/j.micromeso.2013.09.015 es_ES
dc.description.references Alcock, N. W., Tracy, V. M., & Waddington, T. C. (1976). Acetates and acetato-complexes. Part 2. Spectroscopic studies. Journal of the Chemical Society, Dalton Transactions, (21), 2243. doi:10.1039/dt9760002243 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem