Mostrar el registro sencillo del ítem
dc.contributor.author | Gonzalez, Lucia | es_ES |
dc.contributor.author | Agüero, Ángel | es_ES |
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.contributor.author | Lascano-Aimacaña, Diego Sebastián | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.date.accessioned | 2021-01-16T04:31:58Z | |
dc.date.available | 2021-01-16T04:31:58Z | |
dc.date.issued | 2019-05-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/159203 | |
dc.description.abstract | [EN] Maleinized linseed oil (MLO) has been successfully used as biobased compatibilizer in polyester blends. Its effciency as compatibilizer in polymer composites with organic and inorganic fillers, compared to other traditional fillers, has also been proved. The goal of this work is to optimize the amount of MLO on poly(lactic acid)/diatomaceous earth (PLA/DE) composites to open new potential to these materials in the active packaging industry without compromising the environmental effciency of these composites. The amount of DE remains constant at 10 wt% and MLO varies from 1 to 15 phr (weight parts of MLO per 100 g of PLA/DE composite). The e ect of MLO on mechanical, thermal, thermomechanical and morphological properties is described in this work. The obtained results show a clear embrittlement of the uncompatibilized PLA/DE composites, which is progressively reduced by the addition of MLO. MLO shows good miscibility at low concentrations (lower than 5 phr) while above 5 phr, a clear phase separation phenomenon can be detected, with the formation of rounded microvoids and shapes which have a positive e ect on impact strength. | es_ES |
dc.description.sponsorship | This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. L. Quiles-Carrillo is recipient of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD). D. Lascano acknowledges UPV for the grant received though the PAID-01-18 program. N. Montanes acknowledges the project "Development and production of new material from revalued industrial wastes for technological sector applications" for partially funding this research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Maleinized linseed oil MLO | es_ES |
dc.subject | Poly(lactic acid) | es_ES |
dc.subject | Diatomaceous earth | es_ES |
dc.subject | Biocomposites | es_ES |
dc.subject | Active containers | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma12101627 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Gonzalez, L.; Agüero, Á.; Quiles-Carrillo, L.; Lascano-Aimacaña, DS.; Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials. 12(10):1-15. https://doi.org/10.3390/ma12101627 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma12101627 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 31108954 | es_ES |
dc.identifier.pmcid | PMC6566712 | es_ES |
dc.relation.pasarela | S\388021 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 | es_ES |
dc.description.references | Islam, M. R., Beg, M. D. H., & Jamari, S. S. (2014). Development of vegetable-oil-based polymers. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40787 | es_ES |
dc.description.references | Lu, Y., & Larock, R. C. (2009). Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications. ChemSusChem, 2(2), 136-147. doi:10.1002/cssc.200800241 | es_ES |
dc.description.references | Sharma, V., & Kundu, P. P. (2006). Addition polymers from natural oils—A review. Progress in Polymer Science, 31(11), 983-1008. doi:10.1016/j.progpolymsci.2006.09.003 | es_ES |
dc.description.references | Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. doi:10.1016/j.actbio.2013.08.040 | es_ES |
dc.description.references | Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2007). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275-281. doi:10.1002/pi.2340 | es_ES |
dc.description.references | Xia, Y., & Larock, R. C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 12(11), 1893. doi:10.1039/c0gc00264j | es_ES |
dc.description.references | Xia, Y., Quirino, R. L., & Larock, R. C. (2013). Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 1(1), 3-27. doi:10.7569/jrm.2012.634103 | es_ES |
dc.description.references | Milchert, E., Malarczyk, K., & Kłos, M. (2015). Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules, 20(12), 21481-21493. doi:10.3390/molecules201219778 | es_ES |
dc.description.references | Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581-1590. doi:10.1080/03602559.2010.512338 | es_ES |
dc.description.references | Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 | es_ES |
dc.description.references | Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924 | es_ES |
dc.description.references | Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Lopez, J., & Balart, R. (2010). Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. Journal of Materials Science, 45(16), 4406-4413. doi:10.1007/s10853-010-4520-6 | es_ES |
dc.description.references | Xing, C., & Matuana, L. M. (2015). Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. Journal of Applied Polymer Science, 133(12), n/a-n/a. doi:10.1002/app.43201 | es_ES |
dc.description.references | Carbonell-Verdu, A., Garcia-Sanoguera, D., Jordá-Vilaplana, A., Sanchez-Nacher, L., & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. Journal of Applied Polymer Science, 133(27). doi:10.1002/app.43642 | es_ES |
dc.description.references | Vijayarajan, S., Selke, S. E. M., & Matuana, L. M. (2013). Continuous Blending Approach in the Manufacture of Epoxidized Soybean-Plasticized Poly(lactic acid) Sheets and Films. Macromolecular Materials and Engineering, 299(5), 622-630. doi:10.1002/mame.201300226 | es_ES |
dc.description.references | Sotoodeh-Nia, Z., Hohmann, A., Buss, A., Williams, R. C., & Cochran, E. W. (2018). Rheological and physical characterization of pressure sensitive adhesives from bio-derived block copolymers. Journal of Applied Polymer Science, 135(34), 46618. doi:10.1002/app.46618 | es_ES |
dc.description.references | Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050 | es_ES |
dc.description.references | Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013 | es_ES |
dc.description.references | Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050 | es_ES |
dc.description.references | Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613 | es_ES |
dc.description.references | Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D. (2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Advances, 5(57), 45679-45687. doi:10.1039/c5ra05610a | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 | es_ES |
dc.description.references | Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779 | es_ES |
dc.description.references | Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7 | es_ES |
dc.description.references | Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004 | es_ES |
dc.description.references | Kumar, N., Kaur, P., & Bhatia, S. (2017). Advances in bio-nanocomposite materials for food packaging: a review. Nutrition & Food Science, 47(4), 591-606. doi:10.1108/nfs-11-2016-0176 | es_ES |
dc.description.references | Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7 | es_ES |
dc.description.references | Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008 | es_ES |
dc.description.references | Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030 | es_ES |
dc.description.references | Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023 | es_ES |
dc.description.references | Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018 | es_ES |
dc.description.references | Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9 | es_ES |
dc.description.references | Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069m | es_ES |
dc.description.references | Özen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149 | es_ES |
dc.description.references | Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005 | es_ES |
dc.description.references | Liu, M., Zhang, Y., & Zhou, C. (2013). Nanocomposites of halloysite and polylactide. Applied Clay Science, 75-76, 52-59. doi:10.1016/j.clay.2013.02.019 | es_ES |
dc.description.references | Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. Journal of Thermal Analysis and Calorimetry, 118(3), 1639-1647. doi:10.1007/s10973-014-4062-2 | es_ES |
dc.description.references | Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358 | es_ES |
dc.description.references | De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244 | es_ES |
dc.description.references | Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 | es_ES |
dc.description.references | Li, M., Li, S., Xia, J., Ding, C., Wang, M., Xu, L., … Huang, K. (2017). Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Materials & Design, 122, 366-375. doi:10.1016/j.matdes.2017.03.025 | es_ES |
dc.description.references | Prempeh, N., Li, J., Liu, D., Das, K., Maiti, S., & Zhang, Y. (2014). Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: A comparative study. Polymer Science Series A, 56(6), 856-863. doi:10.1134/s0965545x14060182 | es_ES |
dc.description.references | Carrasco, F., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2011). Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 178, 451-460. doi:10.1016/j.cej.2011.10.036 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 | es_ES |
dc.description.references | Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917 | es_ES |
dc.description.references | Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729 | es_ES |
dc.description.references | Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9 | es_ES |
dc.description.references | Shah, D. U. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 48(18), 6083-6107. doi:10.1007/s10853-013-7458-7 | es_ES |
dc.description.references | Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), n/a-n/a. doi:10.1002/app.41808 | es_ES |
dc.description.references | Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 | es_ES |
dc.description.references | Silverajah, V. S. G., Ibrahim, N. A., Yunus, W. M. Z. W., Hassan, H. A., & Woei, C. B. (2012). A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid)/Epoxidized Palm Oil Blend. International Journal of Molecular Sciences, 13(5), 5878-5898. doi:10.3390/ijms13055878 | es_ES |