- -

Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gonzalez, Lucia es_ES
dc.contributor.author Agüero, Ángel es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.date.accessioned 2021-01-16T04:31:58Z
dc.date.available 2021-01-16T04:31:58Z
dc.date.issued 2019-05-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159203
dc.description.abstract [EN] Maleinized linseed oil (MLO) has been successfully used as biobased compatibilizer in polyester blends. Its effciency as compatibilizer in polymer composites with organic and inorganic fillers, compared to other traditional fillers, has also been proved. The goal of this work is to optimize the amount of MLO on poly(lactic acid)/diatomaceous earth (PLA/DE) composites to open new potential to these materials in the active packaging industry without compromising the environmental effciency of these composites. The amount of DE remains constant at 10 wt% and MLO varies from 1 to 15 phr (weight parts of MLO per 100 g of PLA/DE composite). The e ect of MLO on mechanical, thermal, thermomechanical and morphological properties is described in this work. The obtained results show a clear embrittlement of the uncompatibilized PLA/DE composites, which is progressively reduced by the addition of MLO. MLO shows good miscibility at low concentrations (lower than 5 phr) while above 5 phr, a clear phase separation phenomenon can be detected, with the formation of rounded microvoids and shapes which have a positive e ect on impact strength. es_ES
dc.description.sponsorship This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. L. Quiles-Carrillo is recipient of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD). D. Lascano acknowledges UPV for the grant received though the PAID-01-18 program. N. Montanes acknowledges the project "Development and production of new material from revalued industrial wastes for technological sector applications" for partially funding this research. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Maleinized linseed oil MLO es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Diatomaceous earth es_ES
dc.subject Biocomposites es_ES
dc.subject Active containers es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma12101627 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Gonzalez, L.; Agüero, Á.; Quiles-Carrillo, L.; Lascano-Aimacaña, DS.; Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials. 12(10):1-15. https://doi.org/10.3390/ma12101627 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma12101627 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 31108954 es_ES
dc.identifier.pmcid PMC6566712 es_ES
dc.relation.pasarela S\388021 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Islam, M. R., Beg, M. D. H., & Jamari, S. S. (2014). Development of vegetable-oil-based polymers. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40787 es_ES
dc.description.references Lu, Y., & Larock, R. C. (2009). Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications. ChemSusChem, 2(2), 136-147. doi:10.1002/cssc.200800241 es_ES
dc.description.references Sharma, V., & Kundu, P. P. (2006). Addition polymers from natural oils—A review. Progress in Polymer Science, 31(11), 983-1008. doi:10.1016/j.progpolymsci.2006.09.003 es_ES
dc.description.references Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. doi:10.1016/j.actbio.2013.08.040 es_ES
dc.description.references Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2007). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275-281. doi:10.1002/pi.2340 es_ES
dc.description.references Xia, Y., & Larock, R. C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 12(11), 1893. doi:10.1039/c0gc00264j es_ES
dc.description.references Xia, Y., Quirino, R. L., & Larock, R. C. (2013). Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 1(1), 3-27. doi:10.7569/jrm.2012.634103 es_ES
dc.description.references Milchert, E., Malarczyk, K., & Kłos, M. (2015). Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules, 20(12), 21481-21493. doi:10.3390/molecules201219778 es_ES
dc.description.references Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581-1590. doi:10.1080/03602559.2010.512338 es_ES
dc.description.references Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 es_ES
dc.description.references Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924 es_ES
dc.description.references Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Lopez, J., & Balart, R. (2010). Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. Journal of Materials Science, 45(16), 4406-4413. doi:10.1007/s10853-010-4520-6 es_ES
dc.description.references Xing, C., & Matuana, L. M. (2015). Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. Journal of Applied Polymer Science, 133(12), n/a-n/a. doi:10.1002/app.43201 es_ES
dc.description.references Carbonell-Verdu, A., Garcia-Sanoguera, D., Jordá-Vilaplana, A., Sanchez-Nacher, L., & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. Journal of Applied Polymer Science, 133(27). doi:10.1002/app.43642 es_ES
dc.description.references Vijayarajan, S., Selke, S. E. M., & Matuana, L. M. (2013). Continuous Blending Approach in the Manufacture of Epoxidized Soybean-Plasticized Poly(lactic acid) Sheets and Films. Macromolecular Materials and Engineering, 299(5), 622-630. doi:10.1002/mame.201300226 es_ES
dc.description.references Sotoodeh-Nia, Z., Hohmann, A., Buss, A., Williams, R. C., & Cochran, E. W. (2018). Rheological and physical characterization of pressure sensitive adhesives from bio-derived block copolymers. Journal of Applied Polymer Science, 135(34), 46618. doi:10.1002/app.46618 es_ES
dc.description.references Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050 es_ES
dc.description.references Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013 es_ES
dc.description.references Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050 es_ES
dc.description.references Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613 es_ES
dc.description.references Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D. (2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Advances, 5(57), 45679-45687. doi:10.1039/c5ra05610a es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329 es_ES
dc.description.references Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779 es_ES
dc.description.references Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7 es_ES
dc.description.references Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004 es_ES
dc.description.references Kumar, N., Kaur, P., & Bhatia, S. (2017). Advances in bio-nanocomposite materials for food packaging: a review. Nutrition & Food Science, 47(4), 591-606. doi:10.1108/nfs-11-2016-0176 es_ES
dc.description.references Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7 es_ES
dc.description.references Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008 es_ES
dc.description.references Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030 es_ES
dc.description.references Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023 es_ES
dc.description.references Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018 es_ES
dc.description.references Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9 es_ES
dc.description.references Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069m es_ES
dc.description.references Özen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149 es_ES
dc.description.references Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005 es_ES
dc.description.references Liu, M., Zhang, Y., & Zhou, C. (2013). Nanocomposites of halloysite and polylactide. Applied Clay Science, 75-76, 52-59. doi:10.1016/j.clay.2013.02.019 es_ES
dc.description.references Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. Journal of Thermal Analysis and Calorimetry, 118(3), 1639-1647. doi:10.1007/s10973-014-4062-2 es_ES
dc.description.references Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358 es_ES
dc.description.references De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244 es_ES
dc.description.references Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69 es_ES
dc.description.references Li, M., Li, S., Xia, J., Ding, C., Wang, M., Xu, L., … Huang, K. (2017). Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Materials & Design, 122, 366-375. doi:10.1016/j.matdes.2017.03.025 es_ES
dc.description.references Prempeh, N., Li, J., Liu, D., Das, K., Maiti, S., & Zhang, Y. (2014). Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: A comparative study. Polymer Science Series A, 56(6), 856-863. doi:10.1134/s0965545x14060182 es_ES
dc.description.references Carrasco, F., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2011). Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 178, 451-460. doi:10.1016/j.cej.2011.10.036 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062 es_ES
dc.description.references Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917 es_ES
dc.description.references Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729 es_ES
dc.description.references Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9 es_ES
dc.description.references Shah, D. U. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 48(18), 6083-6107. doi:10.1007/s10853-013-7458-7 es_ES
dc.description.references Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), n/a-n/a. doi:10.1002/app.41808 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Silverajah, V. S. G., Ibrahim, N. A., Yunus, W. M. Z. W., Hassan, H. A., & Woei, C. B. (2012). A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid)/Epoxidized Palm Oil Blend. International Journal of Molecular Sciences, 13(5), 5878-5898. doi:10.3390/ijms13055878 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem