- -

Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites

Mostrar el registro completo del ítem

Gonzalez, L.; Agüero, Á.; Quiles-Carrillo, L.; Lascano-Aimacaña, DS.; Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials. 12(10):1-15. https://doi.org/10.3390/ma12101627

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159203

Ficheros en el ítem

Metadatos del ítem

Título: Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites
Autor: Gonzalez, Lucia Agüero, Ángel Quiles-Carrillo, Luis Lascano-Aimacaña, Diego Sebastián Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Maleinized linseed oil (MLO) has been successfully used as biobased compatibilizer in polyester blends. Its effciency as compatibilizer in polymer composites with organic and inorganic fillers, compared to other ...[+]
Palabras clave: Maleinized linseed oil MLO , Poly(lactic acid) , Diatomaceous earth , Biocomposites , Active containers
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma12101627
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma12101627
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-18/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
Agradecimientos:
This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. L. Quiles-Carrillo is recipient of a FPU grant (FPU15/03812) from the Spanish Ministry of ...[+]
Tipo: Artículo

References

Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Islam, M. R., Beg, M. D. H., & Jamari, S. S. (2014). Development of vegetable-oil-based polymers. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40787

Lu, Y., & Larock, R. C. (2009). Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications. ChemSusChem, 2(2), 136-147. doi:10.1002/cssc.200800241 [+]
Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039

Islam, M. R., Beg, M. D. H., & Jamari, S. S. (2014). Development of vegetable-oil-based polymers. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40787

Lu, Y., & Larock, R. C. (2009). Novel Polymeric Materials from Vegetable Oils and Vinyl Monomers: Preparation, Properties, and Applications. ChemSusChem, 2(2), 136-147. doi:10.1002/cssc.200800241

Sharma, V., & Kundu, P. P. (2006). Addition polymers from natural oils—A review. Progress in Polymer Science, 31(11), 983-1008. doi:10.1016/j.progpolymsci.2006.09.003

Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. doi:10.1016/j.actbio.2013.08.040

Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2007). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275-281. doi:10.1002/pi.2340

Xia, Y., & Larock, R. C. (2010). Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 12(11), 1893. doi:10.1039/c0gc00264j

Xia, Y., Quirino, R. L., & Larock, R. C. (2013). Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 1(1), 3-27. doi:10.7569/jrm.2012.634103

Milchert, E., Malarczyk, K., & Kłos, M. (2015). Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review. Molecules, 20(12), 21481-21493. doi:10.3390/molecules201219778

Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581-1590. doi:10.1080/03602559.2010.512338

Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043

Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924

Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Lopez, J., & Balart, R. (2010). Effect of the epoxidized linseed oil concentration as natural plasticizer in vinyl plastisols. Journal of Materials Science, 45(16), 4406-4413. doi:10.1007/s10853-010-4520-6

Xing, C., & Matuana, L. M. (2015). Epoxidized soybean oil-plasticized poly(lactic acid) films performance as impacted by storage. Journal of Applied Polymer Science, 133(12), n/a-n/a. doi:10.1002/app.43201

Carbonell-Verdu, A., Garcia-Sanoguera, D., Jordá-Vilaplana, A., Sanchez-Nacher, L., & Balart, R. (2016). A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. Journal of Applied Polymer Science, 133(27). doi:10.1002/app.43642

Vijayarajan, S., Selke, S. E. M., & Matuana, L. M. (2013). Continuous Blending Approach in the Manufacture of Epoxidized Soybean-Plasticized Poly(lactic acid) Sheets and Films. Macromolecular Materials and Engineering, 299(5), 622-630. doi:10.1002/mame.201300226

Sotoodeh-Nia, Z., Hohmann, A., Buss, A., Williams, R. C., & Cochran, E. W. (2018). Rheological and physical characterization of pressure sensitive adhesives from bio-derived block copolymers. Journal of Applied Polymer Science, 135(34), 46618. doi:10.1002/app.46618

Carbonell-Verdu, A., Samper, M. D., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2017). Plasticization effect of epoxidized cottonseed oil (ECSO) on poly(lactic acid). Industrial Crops and Products, 104, 278-286. doi:10.1016/j.indcrop.2017.04.050

Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013

Ernzen, J. R., Bondan, F., Luvison, C., Henrique Wanke, C., De Nardi Martins, J., Fiorio, R., & Bianchi, O. (2015). Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 133(8), n/a-n/a. doi:10.1002/app.43050

Mauck, S. C., Wang, S., Ding, W., Rohde, B. J., Fortune, C. K., Yang, G., … Robertson, M. L. (2016). Biorenewable Tough Blends of Polylactide and Acrylated Epoxidized Soybean Oil Compatibilized by a Polylactide Star Polymer. Macromolecules, 49(5), 1605-1615. doi:10.1021/acs.macromol.5b02613

Rosu, D., Mustata, F., Tudorachi, N., Musteata, V. E., Rosu, L., & Varganici, C. D. (2015). Novel bio-based flexible epoxy resin from diglycidyl ether of bisphenol A cured with castor oil maleate. RSC Advances, 5(57), 45679-45687. doi:10.1039/c5ra05610a

Ferri, J. M., Garcia-Garcia, D., Montanes, N., Fenollar, O., & Balart, R. (2017). The effect of maleinized linseed oil as biobased plasticizer in poly(lactic acid)-based formulations. Polymer International, 66(6), 882-891. doi:10.1002/pi.5329

Aguero, A., Quiles‐Carrillo, L., Jorda‐Vilaplana, A., Fenollar, O., & Montanes, N. (2019). Effect of different compatibilizers on environmentally friendly composites from poly(lactic acid) and diatomaceous earth. Polymer International, 68(5), 893-903. doi:10.1002/pi.5779

Brandelli, A., Brum, L. F. W., & dos Santos, J. H. Z. (2017). Nanostructured bioactive compounds for ecological food packaging. Environmental Chemistry Letters, 15(2), 193-204. doi:10.1007/s10311-017-0621-7

Gorrasi, G., Senatore, V., Vigliotta, G., Belviso, S., & Pucciariello, R. (2014). PET–halloysite nanotubes composites for packaging application: Preparation, characterization and analysis of physical properties. European Polymer Journal, 61, 145-156. doi:10.1016/j.eurpolymj.2014.10.004

Kumar, N., Kaur, P., & Bhatia, S. (2017). Advances in bio-nanocomposite materials for food packaging: a review. Nutrition & Food Science, 47(4), 591-606. doi:10.1108/nfs-11-2016-0176

Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7

Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008

Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. doi:10.1016/j.lwt.2015.06.030

Aw, M. S., Simovic, S., Yu, Y., Addai-Mensah, J., & Losic, D. (2012). Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technology, 223, 52-58. doi:10.1016/j.powtec.2011.04.023

Cacciotti, I., Mori, S., Cherubini, V., & Nanni, F. (2018). Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules, 112, 567-575. doi:10.1016/j.ijbiomac.2018.02.018

Davoudizadeh, S., Ghasemi, M., Khezri, K., & Bahadorikhalili, S. (2017). Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP. Journal of Thermal Analysis and Calorimetry, 131(3), 2513-2521. doi:10.1007/s10973-017-6771-9

Medarevic, D., Losic, D., & Ibric, S. (2016). Diatoms - nature materials with great potential for bioapplications. Hemijska industrija, 70(6), 613-627. doi:10.2298/hemind150708069m

Özen, İ., Şimşek, S., & Okyay, G. (2015). Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 332, 22-31. doi:10.1016/j.apsusc.2015.01.149

Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005

Liu, M., Zhang, Y., & Zhou, C. (2013). Nanocomposites of halloysite and polylactide. Applied Clay Science, 75-76, 52-59. doi:10.1016/j.clay.2013.02.019

Tham, W. L., Poh, B. T., Mohd Ishak, Z. A., & Chow, W. S. (2014). Thermal behaviors and mechanical properties of halloysite nanotube-reinforced poly(lactic acid) nanocomposites. Journal of Thermal Analysis and Calorimetry, 118(3), 1639-1647. doi:10.1007/s10973-014-4062-2

Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358

De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244

Carbonell-Verdu, A., Ferri, J. M., Dominici, F., Boronat, T., Sanchez-Nacher, L., Balart, R., & Torre, L. (2018). Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. Express Polymer Letters, 12(9), 808-823. doi:10.3144/expresspolymlett.2018.69

Li, M., Li, S., Xia, J., Ding, C., Wang, M., Xu, L., … Huang, K. (2017). Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Materials & Design, 122, 366-375. doi:10.1016/j.matdes.2017.03.025

Prempeh, N., Li, J., Liu, D., Das, K., Maiti, S., & Zhang, Y. (2014). Plasticizing effects of epoxidized sun flower oil on biodegradable polylactide films: A comparative study. Polymer Science Series A, 56(6), 856-863. doi:10.1134/s0965545x14060182

Carrasco, F., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2011). Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 178, 451-460. doi:10.1016/j.cej.2011.10.036

Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062

Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917

Silverajah, V. S. G., Ibrahim, N. A., Zainuddin, N., Yunus, W. M. Z. W., & Hassan, H. A. (2012). Mechanical, Thermal and Morphological Properties of Poly(lactic acid)/Epoxidized Palm Olein Blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729

Ali, F., Chang, Y.-W., Kang, S. C., & Yoon, J. Y. (2008). Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 62(1), 91-98. doi:10.1007/s00289-008-1012-9

Shah, D. U. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. Journal of Materials Science, 48(18), 6083-6107. doi:10.1007/s10853-013-7458-7

Yu, Y., Cheng, Y., Ren, J., Cao, E., Fu, X., & Guo, W. (2015). Plasticizing effect of poly(ethylene glycol)s with different molecular weights in poly(lactic acid)/starch blends. Journal of Applied Polymer Science, 132(16), n/a-n/a. doi:10.1002/app.41808

Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017

Silverajah, V. S. G., Ibrahim, N. A., Yunus, W. M. Z. W., Hassan, H. A., & Woei, C. B. (2012). A Comparative Study on the Mechanical, Thermal and Morphological Characterization of Poly(lactic acid)/Epoxidized Palm Oil Blend. International Journal of Molecular Sciences, 13(5), 5878-5898. doi:10.3390/ijms13055878

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem