- -

Optimal control of a turbocharged direct injection diesel engine by direct method optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal control of a turbocharged direct injection diesel engine by direct method optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Luján, José M. es_ES
dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Reig, Alberto es_ES
dc.date.accessioned 2021-01-16T04:32:22Z
dc.date.available 2021-01-16T04:32:22Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159215
dc.description This is the author¿s version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087418772231 es_ES
dc.description.abstract [EN] This work studies the effect and performance of an optimal control strategy on engine fuel efficiency and pollutant emissions. An accurate mean value control-oriented engine model has been developed and experimental validation on a wide range of operating conditions was carried out. A direct optimization method based on Euler's collocation scheme is used in combination with the above model in order to address the optimal control of the engine. This optimization method provides the optimal trajectories of engine controls (fueling rate, exhaust gas recirculation valve position, variable turbine geometry position and start of injection) to reproduce a predefined route (speed trajectory including variable road grade), minimizing fuel consumption with limited NOx emissions and a low soot stamp. This optimization procedure is performed for a set of different NOx emission limits in order to analyze the trade-off between optimal fuel consumption and minimum emissions. Optimal control strategies are validated in an engine test bench and compared against engine factory calibration. Experimental results show that significant improvements in both fuel efficiency and emissions reduction can be achieved with optimal control strategy. Fuel savings at about 4% and less than half of the factory NOx emissions were measured in the actual engine, while soot generation was still low. Experimental results and optimal control trajectories are thoroughly analyzed, identifying the different strategies that allowed those performance improvements. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Ministerio de Economia y Competitividad through project TRA2016-78717-R. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Optimal control es_ES
dc.subject Internal combustion engine es_ES
dc.subject Experimental validation es_ES
dc.subject Direct optimization method es_ES
dc.subject NOx emissions es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Optimal control of a turbocharged direct injection diesel engine by direct method optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418772231 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2016-78717-R/ES/ESTRATEGIAS DE CONTROL BASADAS EN LA INFORMACION CONTEXTUAL DEL VEHICULO PARA LA REDUCCION DEL CONSUMO DE COMBUSTIBLE Y LAS EMISIONES EN CONDICIONES REALES DE CONDUCCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Luján, JM.; Guardiola, C.; Pla Moreno, B.; Reig, A. (2019). Optimal control of a turbocharged direct injection diesel engine by direct method optimization. International Journal of Engine Research. 20(6):640-652. https://doi.org/10.1177/1468087418772231 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418772231 es_ES
dc.description.upvformatpinicio 640 es_ES
dc.description.upvformatpfin 652 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\392731 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Payri, F., Luján, J., Guardiola, C., & Pla, B. (2014). A Challenging Future for the IC Engine: New Technologies and the Control Role. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 70(1), 15-30. doi:10.2516/ogst/2014002 es_ES
dc.description.references Hagelauer, P., & Mora-Camino, F. (1998). A soft dynamic programming approach for on-line aircraft 4D-trajectory optimization. European Journal of Operational Research, 107(1), 87-95. doi:10.1016/s0377-2217(97)00221-x es_ES
dc.description.references Higgins, A., Kozan, E., & Ferreira, L. (1996). Optimal scheduling of trains on a single line track. Transportation Research Part B: Methodological, 30(2), 147-161. doi:10.1016/0191-2615(95)00022-4 es_ES
dc.description.references Darby, C. L., & Rao, A. V. (2011). Minimum-Fuel Low-Earth Orbit Aeroassisted Orbital Transfer of Small Spacecraft. Journal of Spacecraft and Rockets, 48(4), 618-628. doi:10.2514/1.a32011 es_ES
dc.description.references Nilsson, T., Froberg, A., & Aslund, J. (2012). Optimal Operation of a Turbocharged Diesel Engine during Transients. SAE International Journal of Engines, 5(2), 571-578. doi:10.4271/2012-01-0711 es_ES
dc.description.references Asprion, J., Chinellato, O., & Guzzella, L. (2014). Optimal Control of Diesel Engines: Numerical Methods, Applications, and Experimental Validation. Mathematical Problems in Engineering, 2014, 1-21. doi:10.1155/2014/286538 es_ES
dc.description.references Guardiola, C., Pla, B., Bares, P., & Waschl, H. (2016). Adaptive calibration for reduced fuel consumption and emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(14), 2002-2014. doi:10.1177/0954407016636977 es_ES
dc.description.references Luján, J. M., Guardiola, C., Pla, B., & Reig, A. (2015). Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions. Energy, 90, 1790-1798. doi:10.1016/j.energy.2015.06.138 es_ES
dc.description.references Guardiola, C., Pla, B., Blanco-Rodríguez, D., & Reig, A. (2013). Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles. International Journal of Computer Mathematics, 91(1), 147-156. doi:10.1080/00207160.2013.829567 es_ES
dc.description.references Asprion, J., Chinellato, O., & Guzzella, L. (2013). Optimisation-oriented modelling of the NOx emissions of a Diesel engine. Energy Conversion and Management, 75, 61-73. doi:10.1016/j.enconman.2013.05.039 es_ES
dc.description.references Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-516. doi:10.1090/s0002-9904-1954-09848-8 es_ES
dc.description.references Vinter, R. (2010). Optimal Control. doi:10.1007/978-0-8176-8086-2 es_ES
dc.description.references Tieu, D., Cluett, W. R., & Penlidis, A. (1995). A comparison of collocation methods for solving dynamic optimization problems. Computers & Chemical Engineering, 19(4), 375-381. doi:10.1016/0098-1354(94)00064-u es_ES
dc.description.references Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. doi:10.1137/1.9780898718577 es_ES
dc.description.references Hinze, M., & Rösch, A. (2011). Discretization of Optimal Control Problems. Constrained Optimization and Optimal Control for Partial Differential Equations, 391-430. doi:10.1007/978-3-0348-0133-1_21 es_ES
dc.description.references Bellman, R. (1956). DYNAMIC PROGRAMMING AND LAGRANGE MULTIPLIERS. Proceedings of the National Academy of Sciences, 42(10), 767-769. doi:10.1073/pnas.42.10.767 es_ES
dc.description.references Diehl, M., Bock, H. G., Diedam, H., & Wieber, P.-B. (s. f.). Fast Direct Multiple Shooting Algorithms for Optimal Robot Control. Fast Motions in Biomechanics and Robotics, 65-93. doi:10.1007/978-3-540-36119-0_4 es_ES
dc.description.references Wächter, A., & Biegler, L. T. (2005). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1), 25-57. doi:10.1007/s10107-004-0559-y es_ES
dc.description.references Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35(151), 773-773. doi:10.1090/s0025-5718-1980-0572855-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem