- -

Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy

Show simple item record

Files in this item

dc.contributor.author Florez, Frank es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Higón Calvet, José Luís es_ES
dc.contributor.author Olivar, Gerard es_ES
dc.contributor.author Taborda, John es_ES
dc.date.accessioned 2021-01-19T04:31:54Z
dc.date.available 2021-01-19T04:31:54Z
dc.date.issued 2019-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159338
dc.description.abstract [EN] To reduce the energy consumption in buildings is necessary to analyze individual rooms and thermal zones, studying mathematical models and applying new control techniques. In this paper, the design, simulation and experimental evaluation of a sliding mode controller for regulating internal temperature in a thermal zone is presented. We propose an experiment with small physical dimensions, consisting of a closed wooden box with heat internal sources to stimulate temperature gradients through operating and shut down cycles. es_ES
dc.description.sponsorship This investigation was supported by national doctoral program of the Colombian Administrative Department of Science Technology and Innovation (Colciencias), and the agreement "Analysis of the properties, applications and market opportunities of G-cover Coatings" closed between the Universitat Politecnica de Valencia (Spain) and the Mexican company G-cover. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Building modeling es_ES
dc.subject Lumped parameter model es_ES
dc.subject Sliding control mode es_ES
dc.subject Reduced scale model es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification EXPRESION GRAFICA ARQUITECTONICA es_ES
dc.title Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math7060503 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Expresión Gráfica Arquitectónica - Departament d'Expressió Gràfica Arquitectònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Florez, F.; Fernández De Córdoba, P.; Higón Calvet, JL.; Olivar, G.; Taborda, J. (2019). Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy. Mathematics. 7(6):1-13. https://doi.org/10.3390/math7060503 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math7060503 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\388627 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Delgarm, N., Sajadi, B., & Delgarm, S. (2016). Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 131, 42-53. doi:10.1016/j.enbuild.2016.09.003 es_ES
dc.description.references Gorni, D., Castilla, M. del M., & Visioli, A. (2016). An efficient modelling for temperature control of residential buildings. Building and Environment, 103, 86-98. doi:10.1016/j.buildenv.2016.03.016 es_ES
dc.description.references Fazenda, P., Lima, P., & Carreira, P. (2016). Context-based thermodynamic modeling of buildings spaces. Energy and Buildings, 124, 164-177. doi:10.1016/j.enbuild.2016.04.068 es_ES
dc.description.references Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511-1522. doi:10.1016/j.enbuild.2011.02.005 es_ES
dc.description.references Ryzhov, A., Ouerdane, H., Gryazina, E., Bischi, A., & Turitsyn, K. (2019). Model predictive control of indoor microclimate: Existing building stock comfort improvement. Energy Conversion and Management, 179, 219-228. doi:10.1016/j.enconman.2018.10.046 es_ES
dc.description.references Fiorentini, M., Wall, J., Ma, Z., Braslavsky, J. H., & Cooper, P. (2017). Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy, 187, 465-479. doi:10.1016/j.apenergy.2016.11.041 es_ES
dc.description.references Massa Gray, F., & Schmidt, M. (2016). Thermal building modelling using Gaussian processes. Energy and Buildings, 119, 119-128. doi:10.1016/j.enbuild.2016.02.004 es_ES
dc.description.references Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy and Buildings, 111, 131-144. doi:10.1016/j.enbuild.2015.11.033 es_ES
dc.description.references Acosta, A., González, A. I., Zamarreño, J. M., & Álvarez, V. (2016). Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy and Buildings, 129, 59-68. doi:10.1016/j.enbuild.2016.07.061 es_ES
dc.description.references Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343-355. doi:10.1016/j.buildenv.2013.11.016 es_ES
dc.description.references Nagarathinam, S., Doddi, H., Vasan, A., Sarangan, V., Venkata Ramakrishna, P., & Sivasubramaniam, A. (2017). Energy efficient thermal comfort in open-plan office buildings. Energy and Buildings, 139, 476-486. doi:10.1016/j.enbuild.2017.01.043 es_ES
dc.description.references Smarra, F., Jain, A., de Rubeis, T., Ambrosini, D., D’Innocenzo, A., & Mangharam, R. (2018). Data-driven model predictive control using random forests for building energy optimization and climate control. Applied Energy, 226, 1252-1272. doi:10.1016/j.apenergy.2018.02.126 es_ES
dc.description.references Killian, M., Mayer, B., & Kozek, M. (2016). Cooperative fuzzy model predictive control for heating and cooling of buildings. Energy and Buildings, 112, 130-140. doi:10.1016/j.enbuild.2015.12.017 es_ES
dc.description.references Brastein, O. M., Perera, D. W. U., Pfeifer, C., & Skeie, N.-O. (2018). Parameter estimation for grey-box models of building thermal behaviour. Energy and Buildings, 169, 58-68. doi:10.1016/j.enbuild.2018.03.057 es_ES
dc.description.references Lirola, J. M., Castañeda, E., Lauret, B., & Khayet, M. (2017). A review on experimental research using scale models for buildings: Application and methodologies. Energy and Buildings, 142, 72-110. doi:10.1016/j.enbuild.2017.02.060 es_ES
dc.description.references Coutinho, C. P., Baptista, A. J., & Dias Rodrigues, J. (2016). Reduced scale models based on similitude theory: A review up to 2015. Engineering Structures, 119, 81-94. doi:10.1016/j.engstruct.2016.04.016 es_ES
dc.description.references Chew, L. W., Glicksman, L. R., & Norford, L. K. (2018). Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales. Building and Environment, 146, 77-87. doi:10.1016/j.buildenv.2018.09.026 es_ES
dc.description.references Chen, S.-Y., & Gong, S.-S. (2017). Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94, 111-128. doi:10.1016/j.ymssp.2017.02.025 es_ES
dc.description.references Huang, Y., Khajepour, A., Ding, H., Bagheri, F., & Bahrami, M. (2017). An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems. Applied Energy, 188, 576-585. doi:10.1016/j.apenergy.2016.12.033 es_ES
dc.description.references Mironova, A., Mercorelli, P., & Zedler, A. (2016). Robust Control using Sliding Mode Approach for Ice-Clamping Device activated by Thermoelectric Coolers. IFAC-PapersOnLine, 49(25), 470-475. doi:10.1016/j.ifacol.2016.12.067 es_ES
dc.description.references Norton, M., Khoo, S., Kouzani, A., & Stojcevski, A. (2015). Adaptive fuzzy multi‐surface sliding control of multiple‐input and multiple‐output autonomous flight systems. IET Control Theory & Applications, 9(4), 587-597. doi:10.1049/iet-cta.2014.0209 es_ES
dc.description.references Fux, S. F., Ashouri, A., Benz, M. J., & Guzzella, L. (2014). EKF based self-adaptive thermal model for a passive house. Energy and Buildings, 68, 811-817. doi:10.1016/j.enbuild.2012.06.016 es_ES


This item appears in the following Collection(s)

Show simple item record