dc.contributor.author |
Florez, Frank
|
es_ES |
dc.contributor.author |
Fernández de Córdoba, Pedro
|
es_ES |
dc.contributor.author |
Higón Calvet, José Luís
|
es_ES |
dc.contributor.author |
Olivar, Gerard
|
es_ES |
dc.contributor.author |
Taborda, John
|
es_ES |
dc.date.accessioned |
2021-01-19T04:31:54Z |
|
dc.date.available |
2021-01-19T04:31:54Z |
|
dc.date.issued |
2019-06 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/159338 |
|
dc.description.abstract |
[EN] To reduce the energy consumption in buildings is necessary to analyze individual rooms and thermal zones, studying mathematical models and applying new control techniques. In this paper, the design, simulation and experimental evaluation of a sliding mode controller for regulating internal temperature in a thermal zone is presented. We propose an experiment with small physical dimensions, consisting of a closed wooden box with heat internal sources to stimulate temperature gradients through operating and shut down cycles. |
es_ES |
dc.description.sponsorship |
This investigation was supported by national doctoral program of the Colombian Administrative Department of Science Technology and Innovation (Colciencias), and the agreement "Analysis of the properties, applications and market opportunities of G-cover Coatings" closed between the Universitat Politecnica de Valencia (Spain) and the Mexican company G-cover. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Mathematics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Building modeling |
es_ES |
dc.subject |
Lumped parameter model |
es_ES |
dc.subject |
Sliding control mode |
es_ES |
dc.subject |
Reduced scale model |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.subject.classification |
EXPRESION GRAFICA ARQUITECTONICA |
es_ES |
dc.title |
Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/math7060503 |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Expresión Gráfica Arquitectónica - Departament d'Expressió Gràfica Arquitectònica |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Florez, F.; Fernández De Córdoba, P.; Higón Calvet, JL.; Olivar, G.; Taborda, J. (2019). Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy. Mathematics. 7(6):1-13. https://doi.org/10.3390/math7060503 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/math7060503 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
13 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
7 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.identifier.eissn |
2227-7390 |
es_ES |
dc.relation.pasarela |
S\388627 |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.contributor.funder |
Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia |
es_ES |
dc.description.references |
Delgarm, N., Sajadi, B., & Delgarm, S. (2016). Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 131, 42-53. doi:10.1016/j.enbuild.2016.09.003 |
es_ES |
dc.description.references |
Gorni, D., Castilla, M. del M., & Visioli, A. (2016). An efficient modelling for temperature control of residential buildings. Building and Environment, 103, 86-98. doi:10.1016/j.buildenv.2016.03.016 |
es_ES |
dc.description.references |
Fazenda, P., Lima, P., & Carreira, P. (2016). Context-based thermodynamic modeling of buildings spaces. Energy and Buildings, 124, 164-177. doi:10.1016/j.enbuild.2016.04.068 |
es_ES |
dc.description.references |
Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511-1522. doi:10.1016/j.enbuild.2011.02.005 |
es_ES |
dc.description.references |
Ryzhov, A., Ouerdane, H., Gryazina, E., Bischi, A., & Turitsyn, K. (2019). Model predictive control of indoor microclimate: Existing building stock comfort improvement. Energy Conversion and Management, 179, 219-228. doi:10.1016/j.enconman.2018.10.046 |
es_ES |
dc.description.references |
Fiorentini, M., Wall, J., Ma, Z., Braslavsky, J. H., & Cooper, P. (2017). Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy, 187, 465-479. doi:10.1016/j.apenergy.2016.11.041 |
es_ES |
dc.description.references |
Massa Gray, F., & Schmidt, M. (2016). Thermal building modelling using Gaussian processes. Energy and Buildings, 119, 119-128. doi:10.1016/j.enbuild.2016.02.004 |
es_ES |
dc.description.references |
Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy and Buildings, 111, 131-144. doi:10.1016/j.enbuild.2015.11.033 |
es_ES |
dc.description.references |
Acosta, A., González, A. I., Zamarreño, J. M., & Álvarez, V. (2016). Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy and Buildings, 129, 59-68. doi:10.1016/j.enbuild.2016.07.061 |
es_ES |
dc.description.references |
Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343-355. doi:10.1016/j.buildenv.2013.11.016 |
es_ES |
dc.description.references |
Nagarathinam, S., Doddi, H., Vasan, A., Sarangan, V., Venkata Ramakrishna, P., & Sivasubramaniam, A. (2017). Energy efficient thermal comfort in open-plan office buildings. Energy and Buildings, 139, 476-486. doi:10.1016/j.enbuild.2017.01.043 |
es_ES |
dc.description.references |
Smarra, F., Jain, A., de Rubeis, T., Ambrosini, D., D’Innocenzo, A., & Mangharam, R. (2018). Data-driven model predictive control using random forests for building energy optimization and climate control. Applied Energy, 226, 1252-1272. doi:10.1016/j.apenergy.2018.02.126 |
es_ES |
dc.description.references |
Killian, M., Mayer, B., & Kozek, M. (2016). Cooperative fuzzy model predictive control for heating and cooling of buildings. Energy and Buildings, 112, 130-140. doi:10.1016/j.enbuild.2015.12.017 |
es_ES |
dc.description.references |
Brastein, O. M., Perera, D. W. U., Pfeifer, C., & Skeie, N.-O. (2018). Parameter estimation for grey-box models of building thermal behaviour. Energy and Buildings, 169, 58-68. doi:10.1016/j.enbuild.2018.03.057 |
es_ES |
dc.description.references |
Lirola, J. M., Castañeda, E., Lauret, B., & Khayet, M. (2017). A review on experimental research using scale models for buildings: Application and methodologies. Energy and Buildings, 142, 72-110. doi:10.1016/j.enbuild.2017.02.060 |
es_ES |
dc.description.references |
Coutinho, C. P., Baptista, A. J., & Dias Rodrigues, J. (2016). Reduced scale models based on similitude theory: A review up to 2015. Engineering Structures, 119, 81-94. doi:10.1016/j.engstruct.2016.04.016 |
es_ES |
dc.description.references |
Chew, L. W., Glicksman, L. R., & Norford, L. K. (2018). Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales. Building and Environment, 146, 77-87. doi:10.1016/j.buildenv.2018.09.026 |
es_ES |
dc.description.references |
Chen, S.-Y., & Gong, S.-S. (2017). Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94, 111-128. doi:10.1016/j.ymssp.2017.02.025 |
es_ES |
dc.description.references |
Huang, Y., Khajepour, A., Ding, H., Bagheri, F., & Bahrami, M. (2017). An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems. Applied Energy, 188, 576-585. doi:10.1016/j.apenergy.2016.12.033 |
es_ES |
dc.description.references |
Mironova, A., Mercorelli, P., & Zedler, A. (2016). Robust Control using Sliding Mode Approach for Ice-Clamping Device activated by Thermoelectric Coolers. IFAC-PapersOnLine, 49(25), 470-475. doi:10.1016/j.ifacol.2016.12.067 |
es_ES |
dc.description.references |
Norton, M., Khoo, S., Kouzani, A., & Stojcevski, A. (2015). Adaptive fuzzy multi‐surface sliding control of multiple‐input and multiple‐output autonomous flight systems. IET Control Theory & Applications, 9(4), 587-597. doi:10.1049/iet-cta.2014.0209 |
es_ES |
dc.description.references |
Fux, S. F., Ashouri, A., Benz, M. J., & Guzzella, L. (2014). EKF based self-adaptive thermal model for a passive house. Energy and Buildings, 68, 811-817. doi:10.1016/j.enbuild.2012.06.016 |
es_ES |