- -

Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy

Mostrar el registro completo del ítem

Florez, F.; Fernández De Córdoba, P.; Higón Calvet, JL.; Olivar, G.; Taborda, J. (2019). Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy. Mathematics. 7(6):1-13. https://doi.org/10.3390/math7060503

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159338

Ficheros en el ítem

Metadatos del ítem

Título: Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy
Autor: Florez, Frank Fernández de Córdoba, Pedro Higón Calvet, José Luís Olivar, Gerard Taborda, John
Entidad UPV: Universitat Politècnica de València. Departamento de Expresión Gráfica Arquitectónica - Departament d'Expressió Gràfica Arquitectònica
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] To reduce the energy consumption in buildings is necessary to analyze individual rooms and thermal zones, studying mathematical models and applying new control techniques. In this paper, the design, simulation and ...[+]
Palabras clave: Building modeling , Lumped parameter model , Sliding control mode , Reduced scale model
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7060503
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math7060503
Agradecimientos:
This investigation was supported by national doctoral program of the Colombian Administrative Department of Science Technology and Innovation (Colciencias), and the agreement "Analysis of the properties, applications and ...[+]
Tipo: Artículo

References

Delgarm, N., Sajadi, B., & Delgarm, S. (2016). Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 131, 42-53. doi:10.1016/j.enbuild.2016.09.003

Gorni, D., Castilla, M. del M., & Visioli, A. (2016). An efficient modelling for temperature control of residential buildings. Building and Environment, 103, 86-98. doi:10.1016/j.buildenv.2016.03.016

Fazenda, P., Lima, P., & Carreira, P. (2016). Context-based thermodynamic modeling of buildings spaces. Energy and Buildings, 124, 164-177. doi:10.1016/j.enbuild.2016.04.068 [+]
Delgarm, N., Sajadi, B., & Delgarm, S. (2016). Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC). Energy and Buildings, 131, 42-53. doi:10.1016/j.enbuild.2016.09.003

Gorni, D., Castilla, M. del M., & Visioli, A. (2016). An efficient modelling for temperature control of residential buildings. Building and Environment, 103, 86-98. doi:10.1016/j.buildenv.2016.03.016

Fazenda, P., Lima, P., & Carreira, P. (2016). Context-based thermodynamic modeling of buildings spaces. Energy and Buildings, 124, 164-177. doi:10.1016/j.enbuild.2016.04.068

Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511-1522. doi:10.1016/j.enbuild.2011.02.005

Ryzhov, A., Ouerdane, H., Gryazina, E., Bischi, A., & Turitsyn, K. (2019). Model predictive control of indoor microclimate: Existing building stock comfort improvement. Energy Conversion and Management, 179, 219-228. doi:10.1016/j.enconman.2018.10.046

Fiorentini, M., Wall, J., Ma, Z., Braslavsky, J. H., & Cooper, P. (2017). Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage. Applied Energy, 187, 465-479. doi:10.1016/j.apenergy.2016.11.041

Massa Gray, F., & Schmidt, M. (2016). Thermal building modelling using Gaussian processes. Energy and Buildings, 119, 119-128. doi:10.1016/j.enbuild.2016.02.004

Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. (2016). Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort. Energy and Buildings, 111, 131-144. doi:10.1016/j.enbuild.2015.11.033

Acosta, A., González, A. I., Zamarreño, J. M., & Álvarez, V. (2016). Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy and Buildings, 129, 59-68. doi:10.1016/j.enbuild.2016.07.061

Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment, 72, 343-355. doi:10.1016/j.buildenv.2013.11.016

Nagarathinam, S., Doddi, H., Vasan, A., Sarangan, V., Venkata Ramakrishna, P., & Sivasubramaniam, A. (2017). Energy efficient thermal comfort in open-plan office buildings. Energy and Buildings, 139, 476-486. doi:10.1016/j.enbuild.2017.01.043

Smarra, F., Jain, A., de Rubeis, T., Ambrosini, D., D’Innocenzo, A., & Mangharam, R. (2018). Data-driven model predictive control using random forests for building energy optimization and climate control. Applied Energy, 226, 1252-1272. doi:10.1016/j.apenergy.2018.02.126

Killian, M., Mayer, B., & Kozek, M. (2016). Cooperative fuzzy model predictive control for heating and cooling of buildings. Energy and Buildings, 112, 130-140. doi:10.1016/j.enbuild.2015.12.017

Brastein, O. M., Perera, D. W. U., Pfeifer, C., & Skeie, N.-O. (2018). Parameter estimation for grey-box models of building thermal behaviour. Energy and Buildings, 169, 58-68. doi:10.1016/j.enbuild.2018.03.057

Lirola, J. M., Castañeda, E., Lauret, B., & Khayet, M. (2017). A review on experimental research using scale models for buildings: Application and methodologies. Energy and Buildings, 142, 72-110. doi:10.1016/j.enbuild.2017.02.060

Coutinho, C. P., Baptista, A. J., & Dias Rodrigues, J. (2016). Reduced scale models based on similitude theory: A review up to 2015. Engineering Structures, 119, 81-94. doi:10.1016/j.engstruct.2016.04.016

Chew, L. W., Glicksman, L. R., & Norford, L. K. (2018). Buoyant flows in street canyons: Comparison of RANS and LES at reduced and full scales. Building and Environment, 146, 77-87. doi:10.1016/j.buildenv.2018.09.026

Chen, S.-Y., & Gong, S.-S. (2017). Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94, 111-128. doi:10.1016/j.ymssp.2017.02.025

Huang, Y., Khajepour, A., Ding, H., Bagheri, F., & Bahrami, M. (2017). An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems. Applied Energy, 188, 576-585. doi:10.1016/j.apenergy.2016.12.033

Mironova, A., Mercorelli, P., & Zedler, A. (2016). Robust Control using Sliding Mode Approach for Ice-Clamping Device activated by Thermoelectric Coolers. IFAC-PapersOnLine, 49(25), 470-475. doi:10.1016/j.ifacol.2016.12.067

Norton, M., Khoo, S., Kouzani, A., & Stojcevski, A. (2015). Adaptive fuzzy multi‐surface sliding control of multiple‐input and multiple‐output autonomous flight systems. IET Control Theory & Applications, 9(4), 587-597. doi:10.1049/iet-cta.2014.0209

Fux, S. F., Ashouri, A., Benz, M. J., & Guzzella, L. (2014). EKF based self-adaptive thermal model for a passive house. Energy and Buildings, 68, 811-817. doi:10.1016/j.enbuild.2012.06.016

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem