- -

Iterative methods with memory for solving systems of nonlinear equations using a second order approximation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iterative methods with memory for solving systems of nonlinear equations using a second order approximation

Mostrar el registro completo del ítem

Cordero Barbero, A.; Maimó, JG.; Torregrosa Sánchez, JR.; Vassileva, MP. (2019). Iterative methods with memory for solving systems of nonlinear equations using a second order approximation. Mathematics. 7(11):1-12. https://doi.org/10.3390/math7111069

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/159353

Ficheros en el ítem

Metadatos del ítem

Título: Iterative methods with memory for solving systems of nonlinear equations using a second order approximation
Autor: Cordero Barbero, Alicia Maimó, Javier G. Torregrosa Sánchez, Juan Ramón Vassileva, María P.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Iterative methods for solving nonlinear equations are said to have memory when the calculation of the next iterate requires the use of more than one previous iteration. Methods with memory usually have a very stable ...[+]
Palabras clave: Iterative methods , Secant method , Methods with memory , Multidimensional Newton polynomial interpolation , Basin of attraction
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math7111069
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math7111069
Código del Proyecto:
info:eu-repo/grantAgreement/FONDOCYT//2016-2017-212/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089, and FONDOCYT 2016-2017-212 Republica Dominicana.
Tipo: Artículo

References

Soleymani, F., Lotfi, T., Tavakoli, E., & Khaksar Haghani, F. (2015). Several iterative methods with memory using self-accelerators. Applied Mathematics and Computation, 254, 452-458. doi:10.1016/j.amc.2015.01.045

Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9

Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048 [+]
Soleymani, F., Lotfi, T., Tavakoli, E., & Khaksar Haghani, F. (2015). Several iterative methods with memory using self-accelerators. Applied Mathematics and Computation, 254, 452-458. doi:10.1016/j.amc.2015.01.045

Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9

Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048

Potra, F. A. (1982). An error analysis for the secant method. Numerische Mathematik, 38(3), 427-445. doi:10.1007/bf01396443

Fatou, P. (1919). Sur les équations fonctionnelles. Bulletin de la Société mathématique de France, 2, 161-271. doi:10.24033/bsmf.998

Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062

Campos, B., Cordero, A., Torregrosa, J. R., & Vindel, P. (2015). A multidimensional dynamical approach to iterative methods with memory. Applied Mathematics and Computation, 271, 701-715. doi:10.1016/j.amc.2015.09.056

Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem