- -

Iterative methods with memory for solving systems of nonlinear equations using a second order approximation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iterative methods with memory for solving systems of nonlinear equations using a second order approximation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Maimó, Javier G. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, María P. es_ES
dc.date.accessioned 2021-01-19T04:32:24Z
dc.date.available 2021-01-19T04:32:24Z
dc.date.issued 2019-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/159353
dc.description.abstract [EN] Iterative methods for solving nonlinear equations are said to have memory when the calculation of the next iterate requires the use of more than one previous iteration. Methods with memory usually have a very stable behavior in the sense of the wideness of the set of convergent initial estimations. With the right choice of parameters, iterative methods without memory can increase their order of convergence significantly, becoming schemes with memory. In this work, starting from a simple method without memory, we increase its order of convergence without adding new functional evaluations by approximating the accelerating parameter with Newton interpolation polynomials of degree one and two. Using this technique in the multidimensional case, we extend the proposed method to systems of nonlinear equations. Numerical tests are presented to verify the theoretical results and a study of the dynamics of the method is applied to different problems to show its stability. es_ES
dc.description.sponsorship This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE), Generalitat Valenciana PROMETEO/2016/089, and FONDOCYT 2016-2017-212 Republica Dominicana. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Iterative methods es_ES
dc.subject Secant method es_ES
dc.subject Methods with memory es_ES
dc.subject Multidimensional Newton polynomial interpolation es_ES
dc.subject Basin of attraction es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Iterative methods with memory for solving systems of nonlinear equations using a second order approximation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math7111069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2016-2017-212/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Maimó, JG.; Torregrosa Sánchez, JR.; Vassileva, MP. (2019). Iterative methods with memory for solving systems of nonlinear equations using a second order approximation. Mathematics. 7(11):1-12. https://doi.org/10.3390/math7111069 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math7111069 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\399246 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references Soleymani, F., Lotfi, T., Tavakoli, E., & Khaksar Haghani, F. (2015). Several iterative methods with memory using self-accelerators. Applied Mathematics and Computation, 254, 452-458. doi:10.1016/j.amc.2015.01.045 es_ES
dc.description.references Petković, M. S., & Sharma, J. R. (2015). On some efficient derivative-free iterative methods with memory for solving systems of nonlinear equations. Numerical Algorithms, 71(2), 457-474. doi:10.1007/s11075-015-0003-9 es_ES
dc.description.references Narang, M., Bhatia, S., Alshomrani, A. S., & Kanwar, V. (2019). General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 352, 23-39. doi:10.1016/j.cam.2018.10.048 es_ES
dc.description.references Potra, F. A. (1982). An error analysis for the secant method. Numerische Mathematik, 38(3), 427-445. doi:10.1007/bf01396443 es_ES
dc.description.references Fatou, P. (1919). Sur les équations fonctionnelles. Bulletin de la Société mathématique de France, 2, 161-271. doi:10.24033/bsmf.998 es_ES
dc.description.references Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 es_ES
dc.description.references Campos, B., Cordero, A., Torregrosa, J. R., & Vindel, P. (2015). A multidimensional dynamical approach to iterative methods with memory. Applied Mathematics and Computation, 271, 701-715. doi:10.1016/j.amc.2015.09.056 es_ES
dc.description.references Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem